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Abstract Approved:

Existing pattern recognition and classification

algorithms in computer vision require vast amounts of
computations on input data. As a result, memory access time
is a critical parameter in system performance. Tremendous
parallelism in structure and algorithm is required for the
system to operate in real-time. A preprocessing structure
for qualitative feature extraction which meets these system
requirements is presented.

In general, the structure architecture consists of a
cellular array of pixel-processors each containing an
inherently parallel associative memory element. As such,
memory access time is minimal and parallelism is maximized.
By varying this basic structure with regard to
interconnection and additional logic, specific structures

result which are capable of extracting measures of specific
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Two specific structures are described which extract, =
respectively, the qualitative features of texture .
regularity and line trend. Applications of these o
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structures are presented. Low-level simulation and
performance estimates indicate these applications are ;
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viable and amenable to real-time operation. Suggestions -
for the development of structures which extract other \
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Special Associative Preprocessing Structures
for Qualitative Feature Extraction

Chapter 1 INTRCDUCTION

1.1 Computer Vision: An Overview

Man has dreamed of constructing intelligent automata
for ages. Since the development of the Turing machine
around 1950, the dream has been pursued primarily by
workers in the field of artificial intelligence. Their
goal has been to endow computers with information-
processing capabilities comparable to those of biological
organisms (Ballard and Brown, 1982). One of the basic
goals of artificial intelligence is to enable machines to
deal with sensory input.

"Computer vision largely deals with the analysis of
pictures in order to achieve results similar to those
obtained by man" (Levine, 1985). From (Ballard and Brown,
1982): “"Computer vision is the construction of explicit,
meaningful descriptions of physical objects from images."
These definitions are exemplified in a simplified machine
paradigm for computer vision as shown in Figure 1l.1.
Extracted from (Levine, 1985), the diagram consists of two
computational stages. The first is concerned with
"low-level” techniques and is the subject of this thesis.

The second stage, picture interpretation, constitutes

. - ‘,\'Af P ‘n _“' - : -0 . - . s . .
PULIPR TP PRI, . N S U .- e . ataatas e et
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Array Coded Signals Symbols
Input PICTURE ; PICTURE Output
—'_)‘ PROCESSING INTERPRETATION —

Low Level High Level

Figure 1.1 A Machine Paradigm for Computer Vision.

"high-level" processing. Here, input from the first stage
is processed to produce a symbolic output which describes
the input picture. Feedback paths which probably exist
from the high-level to the low-level stages are ignored.

There exist several layers of analysis in the picture
processing stage:

(1) Sensor Representation: Within this level are
contained the functions of image sampling, quantization,
and coding. More simply phrased, the concern is how the
machine represents an image.

(2) Preprocessing: The types of activities in this
level may include noise removal, restoration, enhancement,
or other operations with regard to the image data.

(3) Feature Extraction: Coding of the picture data
into quantities representative of qualitative features
occurs in this level. Here, we areg concerned with useful
descriptive qualities of the input. For example, scme

common features that may be considered and symbolically

e T e e - ) e e L et T, S P R L S N A AP PA PR A S A S ' . e T e
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represented are color, texture, and shape.

These levels emphasize the nature of computer vision :
as being that of picture analysis. Synthesis of pictures, :
on the other hand, is commonly referred to as "computer p
graphics."

There are many applications of picture processing. )
Currently, the three most active areas, with respect to
research, are biomedical image processing, remote sensing,
and industrial automation (Levine, 1985). Table 1.1,

extracted in part, from (Ballard and Brown, 1982), displays N

a more complete listing of computer vision applications.

Table 1.1 Examples of Computer Vision Applications -.
Domain Tasks i;

oy

Robotics Identify or describe objects in -

Ill

scene, Industrial tasks.

-,
¥

Remote Sensing Improve images, resource
analyses, weather prediction.

Military Spying, missile guidance,
tactical analysis. e

Astronomy Improved images, chemical -q
composition analysis. '

Biomedical Diagnosis of abnormalities,
operative and treatment
planning, pathoclogy,
cytology, karyotyping.

Chemistry Analysis of molecular
compositions.
Physics Find new particles, identify

tracks.
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Recent developments in systems for computer vision

are reviewed in scme detail within the next two chapters.

‘I-.' " ‘V .' " "

1.2 Purpose

The bibliography of this thesis represents a sampling
of the research which has been conducted in computer 2
vision. Reading only a few of these references should
convince the reader that modeling human vision with a
computer system is, indeed, a difficult task. Even Ii
so-called simple approaches to this task require a
background in mathematics, statistics, physics, optics, and
electronics for basic understanding.

One premise of this paper is that a computer vision
system should be highly parallel in structure and algorithm S
in order to conduct the massive amcunts of computations
required for real-time pattern recognition and
classification. This premise is supported by literature
reporting the development of highly parallel structures, :
such as cellular logic arrays, for computer vision
implementations. It would seem that these implementations
would also contain memory elements possessing inherent
parallelism (associative memories). However, with only a
few exceptions, this has not occurred. -

The purpose of the research summarized in this thesis
is to design and examine a style of architecture for i

computer vision which is (1) simple, compared to current

RN
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implementations, and (2) highly parallel with respect to
memory as well as structure. As a first step in our design
we define the problem and establish a set of goals and :

objectives. .

1.3 Goals and Objectives

Part of defining any problem requires setting
limitations and making assumptions. Recalling Figure 1.1,
we intend to design a structure which will accomplish 5
preprocessing and feature extraction of the input picture.
In accomplishing this "low-level” processing we will assume
that the input to our structure has been "represented" by
image sampling, quantization, and coding. In order to
concentrate on concepts rather than details, we present cur
design at a structural level.

With this problem definition in mind we may classify

our expectations for this structure into three categories

TR
s e, e 0,0,

of goals and objectives:
(1) simplicity: A goal of our structure will be f
simplicity in architecture. Simplicity in hardware will
limit cost. The structure should be "small" in scale sc
that an implementation may be possible on one VLSI chip.
Additionally, the on-chip design should be "regular" such
that component layout and interconnections are relatively
simple. The design should minimize overhead in both time

and hardware caused by too general of a design.
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A final goal, considered under this general heading

of simplicity, is in regard to chip function. The chip

AP, TaT TN VY Y T, YAV VY v ¥

should simplify the input data (decrease the bandwidth) for

high-level processing.

(2) Parallelism: Parallelism is a primary goal in
that an increase in computational speed is thereby
achieved. The basic structure must be parallel in
architecture, utilize inherently parallel associative

memory, and allow for pipelining where repetitive,

).
1
]

p
<
H

sequential computations are required.

(3) Flexibility: Another primary gocal cf the

structure is that it be versatile. The architecture should
be able to perform a variety of operations upon the input
picture data, thus enabling the detection or extraction of
a variety of features. The structure should be applicable,
as well, to performing standard computer vision
preprocessing such as nocise removal or enhancement.

The chip design should be such that the size may be
expanded as technology develops. Until this time, however,

the chips should have the capability to be "stacked"

Ty TSI ' R - R T

(placed together in a manner tc allow for preprocessing of

larger input pictures). In this regard, there should noct

develop a problem in the handling of border information.
At this point, we have intrcduced the subject of

computer vision and set the stage for the design of an

(SRR AL SN AR

assocliative picture processing (or preprocessing) structure

for qualitative feature extraction. The actual design will

g
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evolve during the next several chapters.

1.4 Chapter Outline

Together, Chapter 2 and Chapter 3 are basically a
review of literature. 1In the former chapter the principles
and concepts of associative memory and associative
processing are reviewed. A basic model of an associative
memory is presented. Various organizations for
implementation of this type memory are discussed. A survey
of current associative array processors and their
application to computer vision completes Chapter 2.

Chapter 3 reviews the principles and concepts of cellular
logic arrays and cellular logic processing. Different
array organizations are discussed with a summary of
operations which can be performed and are applicable to
computer vision. This chapter ends with a section which

surveys cellular logic computers and their use in computer

vision.
In Chapter 4, we marry the concepts of associative il

s

processing and cellular logic processing to develop an

associative preprocessing structure. Initially, a general

design of this structure is presented. Called a FES (for

Feature Extracting Structure), the purpose of the structure
is to preprocess input image data and extract a qualitative
feature of the image. These features may ke used in higher

level pattern recognition and classification algorithms.
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In Section 4.3 specific FES's are considered which

will produce, as output, a specific feature of the input

picture such as a "shape”" or "texture" attribute. We
present specific structures and a.gorithms for the
extraction of the texture feature of "regularity" and the
shape feature of "line trend”.

In the final section of Chapter ¢, multi-feature
FES's are hypothesized. This structure appears to be

capable of simultaneocusly producing a set of qualitative

MALAAES ISR RS A Ay

features. This implies that the FES approach is even more
valuable in computer vision applications.
Applications of the FES are presented in varying

levels of development in Chapter 5. 1In our first

application, we use a FES adapted for extracting the

texture feature of "reqularity" as an aid to focusing for

vision or photographic systems. By way of verification, we
have modeled the focusing process and conducted
experiments. Analysis of the experimental results leads to
a conclusion that the FES is useful in focusing. Programs

and experimental data for this focusing application are

-
VP
r.

contained in the Appendix.

A second example application involves the use of a
FES adapted for detecting the shape feature of "line
trend". The data produced here may be used as an aid to
picture orientation in a vision system. Although a

verification is not conducted at a level which is
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comparable to the modeling and experiments performed for
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the first application, we conclude this application is
viable as well.

In the last section of Chapter 5, we consider other
seemirgly practical applications for the FES. Presented as
a collection of promising ideas, this section highlights
the potential of the FES.

In Chapter 6 we summarize the material presented in
this thesis. The important concepts and conclusions are
reviewed and we analyze the FES with respect to the goals
and objectives set forth in this chapter. The performance
of the FES is estimated with regard to cost, size and
speed. Based upon these estimates we conclude that the FES
is capable of real-time picture processing. In the final
section, suggestions are made for future research in
associative preprocessing structures for qualitative

feature extraction.

The Bibliography represents more than the sum of the
references within each chapter. Here, nearly all of the
"experts" in the field of computer vision have been

represented by some of their most recent works.
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Chapter 2 ASSOCIATIVE MEMORY

2.1 Introduction

It has been at least 25 years since the conception of
the idea of associative processing. In the past,
implementation problems and high hardware costs of
associative memories have limited associative processing to
small and highly specialized systems. However, advances in
computer technology and the development of new
architectural concepts have made the design of larger, more
flexible associative processing systems possible (Yau and
Fung, 1977).

One premise of this thesis is that associative
processing is an important concept applicable to computer
vision systems. Such systems require tremendous speed and
parallelism to operate in a real-time environment. Due to
the inherent parallelism of associative memories, it is
realistic to expect that future vision systems will possess
associative memory as an integral component. With the
rapid development of large-scale integrated-circuit (LSI)
technology, implementation costs of these memories have
been greatly reduced. It is anticipated that associative

memocries will be used extensively in a variety of future
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processing systems (Foster, 1976). For example,

associative memory has an established role in memory
management systems. A new scheme which uses sizeable
associative memories to increase memory management
performance is detailed in (Thakkar, 1986).

; Before proceeding further, some basic definitions are

required. An associative memory is defined as a storage

device which stores data in cells. Thes< cells can be
accessed or loaded on the basis of their contents. An

associative processor utilizes an associative memory as an

essential component. Data transformation operations, both
: arithmetic and logical, can be performed over many sets of
arguments with a single instruction. Finally, an

associative array processor is a single-instruction,

multiple-data (SIMD) structure comprised of multiple
associative processors (Hwang and Briggs, 1984).

The value of using associative memory instead of
random access memory (RAM) can best be seen by comparison.
RAM requires a word "address" to access stored data. This
address must be provided, either directly or indirectly, by
the user. 1In all cases, accesses are done in a sequential
manner and only one word of memory may be accessed at a
time. 1In associative memory words are accessed ktased upon

their contents. As such, no user supplied address is

Gty

WA AN

required. Words are accessed in parallel, allowing for

"

multiple accesses using a single instructicn. Asscciative

memory is best used in non-numeric data processing. In
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fact, when conducting flcating-point operations, the use of
RAM achieves greater performance.

The most significant advantage of associative memory
use lies in its ability to perform parallel search and
comparison operations at a rate not possible using RAM.
This is shown via an example in Section 2.2.1. The price
paid for this remarkable speed advantage is that of
hardware cost. Recent estimates show associative memory to
be approximately 1.4 to 1.6 times mocre expensive than

comparable RAM (Foster, 1976).

2.2 Associative Memories

Having introduced the concept of associative memcry,
we now proceed to examine its structure in socme detail. A
basic model is presented and the operation of this
structure is shown by an illustrative example. Associative
memory organizations are discussed followed by an example

associative memory implementation.

2.2.1 A Basic Model

The structure of a "basic" associative memory is

given in Figure 2.1. 1In this model, an associative memory
is shown to be an array of bit-cells. The entire array,
then, consists of n words each having m tits. Each cell in

the array contains a one-bit memory element and asscciated
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comparison logic gates. This logic-in-memory is what

enables parallel read or write operations to occur in the

memory array.
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Figure 2.1 Asscociative Memory Model B
(Fcster,1976)

In a parallel search/comparison operaticn,
comparisons and masking are invclved in the execution. The
comparand register is used to hold the "key"” cperand beirg
compared or searched for. The masking register is used to
enatle or disable the bit-slices required for the

oreration. A bit-slice is a column of bit-cells of all
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words at the same position. A bit position disabled by the i
pattern in the masking register is said to be "masked". -

The indicator register (and one or more temporary
registers) are utilized for holding the current (or
pPrevious) match patterns. With this structure in mind we

consider the example depicted in Figure 2.2,

Query: Search for those students whose ages are in the range (21, 31)

0 0 0 21 0 “———— First matching key
c 0 0 0 3 0 e SetONd Matching key
M 00...0 0 00...0 1..1 00..0
1 T
Ford 0 EE b1 3 1 1
Nixon l 1 CE 19 ! 1 (1]
Smutn 1 ME 28 4 1 1
Jones 0 _ Marth 33 4 0 !
F o] s 21 2 ! 1
: : : : : : .
L] L] *
r
Brown 1 t Physics l 3 3 1 I
Peterson 0 Chem 20 [ 2 J 1 0
Name Sex Dept. Age Class T T
Result Resuit after the
after the (irst search
second
search

Figure 2.2 An Example Search Operation Using
Associative Memory. (Foster, 1976)
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Imagine accessing an unsorted "student file" and
requesting the names of all students between 21 and 31
years of age. If this were done using RAM it would require
an access to every entry within the file. Figure 2.2
depicts the same search but utilizing associative memory.
The masking register is set such that only the age field
will be involved in the comparison process. The first age,
21, was latched into the comparand register, memory
accessed and results appear in the indicator register.

(The comparison logic, avoided here for simplicity, will be
described later.) After transferring this data to a
temporary register the same process is performed using the
second age, 31. Finally, the temporary and indicator
registers are "anded" to provide the requested information.
Note that only two associative memory accesses are required

for the entire search operation.

2.2.2 Organizations

Associative memories can be classified into four
categories based upon their organization: fully parallel,
bit-serial, word-serial and block oriented. Some
extensions or modifications to these basic organizations,
however, have been implemented or proposed. The primary
emphasis here will be devoted to the fully parallel and
bit-serial organizations.

The word-serial system dces not utilize parallel werd
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operations. Considering an associative memory as a "black
box" device, this organization qualifies as an associative
memory due to its high speed. This device essentially
represents a hardware implementation of a simple program
loop used for a linear search. (Yau and Fung, 1977) The
organization is efficient as it requires only a single
instruction to conduct a comparative search and because
data rates of circulating memories are much higher than
those of RAM.

Block oriented organizations are utilized for
applications such as information storage and retrieval with
regard to mass storage. Proposals of this type involve the
use of high-speed drums or disks with associated
"logic-per-track" devices (Yau and Fung, 1977).

In a fully parallel organization the comparison

process is performed in parallel by word and by bit. All

bit-slices not masked are simultaneocusly involved in the
operation. Logically complex word match tags are used.
This organization is shown in Figure 2.3 (a). 1
Figure 2.3(b) depicts the bit-serial organizaticn. Ej
Here only one bit-slice (not masked) at a time is invclved
in the compariscn. The figure is misleading in that it
shows the bit-parallel organization to be seemingly less
complex than the bit-serial organization. Actually, the

word match networks in (a) contain much more lcgic than the

word logic blocks in (b). Often referred to as a

compromise between the fully parallel and word-serial

-
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organizations, the bit-serial organization is implemented
in most existing associative array processors (Foster,

1976).

Interrogating bit drives

1 2 . 11n T'Word-match tag
| network |
21 22 2n [ 'Word-match tag
- -
. L__network ° {a) Bit-parallel organization .
e o o . :.
. -
L
mt  |m2 '""__rWord-match tag
T | network m
\ A\ Y
Quzput circuit ALU X
) . Control 1
1 (st v .
l Bit columa sztect logic L unit g

Tor

alala

[T ]

{ Interrogating bit drives

[

oo
1y

\

M r Word

T ] logicl
L X ]

a3 22 in Word ::‘J

logic 2 (b) Bit-serial orgamzation 1

L] L 2 J

. * eeose +
ml ml mn Word
J logic m

Qutput circuit = ALU

|'
|

Figure 2.3 Associative Memcry Crganizations
(Foster, 1976)
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2.2.3 An Implementation

In this section an example implementation of an

associative memory is presented. By redrawing the basic

model of Figure 2.1 with regard to function, the block

P

diagram of Figure 2.4 results. We now examine each block
in turn. 4
The comparand, mask and output registers need be of :;

the same size as the word size in the memory array. The N

A ()
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Figure 2.4 A Functional Diagram of an
Assocjative Memcry
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comparand and masking registers are connected such that
their "anded" value enters the memory array, thus, masking
occurs. Additionally, to insure that masked bit-slices do
not affect the result the masking register is connected to
the match logic as well. (For example, to preclude matches
of a comparand "0" when the mask is "0". See match logic
which follows.)} Upon completion of an operation data may
be latched into the output register as directed by the
selection logic and match results.

Briefly, the selection logic may consist of
multiplexers, encoders, decoders and other logic devices,
This logic allows for external accessing and loading of the
memory array. It is important to realize that actually
getting the desired data from an associative memory is not
any faster than RAM. (Recall that the associative memory
advantage is in comparison and search operations.)

The memory array is composed of an array of basic
memory cells, one of which is shown in Figure 2.5. Each

cell is capable of holding one bit of information.

Arite Read 3Select
oata s
to -
-b %
stor le i:vice Cutput g
- Hegister

Figure 2.5 Basic Memory Cell
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Indicator
Register

Structure of a l-bit Match Lecgic

The match logic is shown in Figure 2.6 for a one bit,

one word memory implementation.
logic feeds the indicator
indicator register must therefore ke of length

number of words in the memory array.

(or match)

The output of

register.

A result

the match
The
equal to the

of one in

the indicator register wcoculd indicate a match of the

associated word in memory.

match.

A zero result indicates no

For implementaticns of larger asscciative memcries,
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the match logic is much more complicated than depicted in
Figure 2.6. For example, a large memory was indicated in
Figure 2.2, the "student file" illustration. The match

logic required here must be able to perform the comparisons

of "less than" and "greater than" as well as equality.

2.3 Associative Array Processors

B

In this section a few examples of existing

associative array processors are reported. The intent is

Y
ST

to show that these processors actually exist and could be

or have been used in computer vision applications. The

. .. [
."""l .

information presented has been extracted from (Fcster,

AR
Loa g

ol

1976) and (Yau and Fung, 1977).

The Parallel Element Processing Ensemble (PEPE)

utilizes an almost fully parallel associative memory
organization. "Almost" refers to the fact that rather than
all bit-slices being compared simultaneously, only a group
of the unmasked bit-slices are compared at the same time.

PEPE was designed as a special-purpose computer to perform

real time radar tracking in an antiballistic missile

environment. Other than having a different sensor system i

(radar instead of visible light) PEPE closely resembles a 2
computer vision system. Many of the data cperations
conducted on radar images by PEPE mirror computer visicn

operations,

The STARAN, develcped by Goodyear Aerospace, utilizes
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. the bit-serial associative memory organization. STARAN
possesses high-speed 1/0 capabilities and can interface
easily with conventional computers. Termed a general
purpose associative array processor, some of STARAN's many
practical applications have been matrix computations, air
traffic control, signal processing and computer vision.

The COMEN computers, developed by Sanders Associates,
possess the bit-serial organization. The associative
memory array of 64 words by 16 bits is augmented by
processing elements (PE). The PE's are connected such that
simultaneous arithmetic operations can be performed on
several bit-slices at one time.

The Associative Linear Array Processor (ALAP) is an
exciting development because it has been developed on a
single LSI wafer. Another recent development by Honeywell
is the Extended Content Addressed Memory System (ECAM).
Honeywell has developed a superchip technique which allows
for the production of associative memory arrays up to the
billion-bit range. The potential of these two systems for

computer vision applications is enormous.
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Chapter 3 CELLULAR LOGIC ARRAYS

3.1 Introduction

In the previocus chapter, we discussed associative
array processing and mentioned applications to computer
vision. Each computer system reviewed utilized associative
memory. However, each system varied in its architecture.
In this chapter we will review the literature regarding a
specific computer architecture: cellular logic array
computers. The references listed in the Bibliography, when
combined, fairly represent the state of the art with regard
to computer vision. Based upon these sources, it seems
apparent that the most popular and promising computer
architecture for computer vision is a cellular logic
structure.

This structure is not a new idea. S. M. Unger
suggested using a two-dimensional array of processing
elements as a natural computer architecture for image
processing and recognition over 25 years ago. (Rosenfeld,
1983) 1In Section 3.2 we review the principles of image
processing using the cellular logic structure. Emphasis is
on the two-~dimensional processor array where each processor

is responsible for one element of the image (a pixel) and

ap o iaa N M ... . a‘'a'a‘a’s
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neighboring processors are responsible for neighboring
pixels. By using hardwired communications between
neighboring processors, local operations can be performed
or local features can be detected in a highly parallel

manner. The section basically summarizes the concepts

presented in a special computer vision issue of Computer

PRI

o

(January, 1983) In particular, the article by Azriel

Rosenfeld is summarized in detail.

S

In the last section of this chapter, we review

current implementations of cellular logic processing., In
this review, the diversity of the basic cellular array -]

architecture is most interesting. Recent IC technology has

g

had profound effects in these implementutions and has

expanded the number of practical applications for cellular

.
LN

arrays with regard to computer vision., (Preston, 1983)

3.2 Cellular Arrays

A cellular array is a two-dimensional array of

- . v
u W R I

processors. Each processor can communicate directly with
its neighbors in the array as shown in Figure 3.1. For

simplicity, the figure only depicts connections between

each processor and its four vertical and horizontal
neighbors. (Note that "border" processors have less than
four neighbors.) We assume that each processcr is capable
of receiving distinguishable messages from its neighbors

and that it can send different messages to each neighbcr.
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p——— g ¢ ¢

|

S —

XX Y

Figure 3.1 A Rectangular, Two-Dimensional
Cellular Array

For image processing, each cell (processcr) gets the
value of an element of the picture (a pixel) as input. If
the array is smaller than the image, the image may be

processed a "block®™ at a time with special consideration

given to block boundaries. Alternatively, providing each
cell has the memory capability, each cell could receive a
block of pixels as input. It should be noted, however,
that all cellular arrays constructed to date pcssess very !!
little memory. Therefore, we conly consider the single ‘
pixel input alternative.

The principle advantage of this arrangement is that
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the processors can operate in parallel within their

neighborhood. Local operations can be performed on the
entire image in an amount of time independent of image
size. Example basic operations and algorithms are
presented in Section 3.2.2.

Cellular logic arrays need not be rectangular in form
as shown in Figure 3.1. In fact, two-dimensional arrays
are quite expensive and the largest in production are only
about 100 x 100 in size. Due to this, other organizations

have rLeen proposed.

3.2.1 Organizations

Other than the two~dimensional cellular array
discussed previously, there are structured cellular arrays
which require much less hardware but at a cost of decreased
performance. One dimensional cellular arrays, or "cellular

strings,” have been used to process two-dimensional images
by scanning row~-by-row and operating in parallel on each
row. Local operations can be performed by storing several
rows *o obtain the needed values of neighbors. This
procedure requires C(n) time for an n x n image at a cost

2) -

of O0(n) which is attractive compared to the 0O(n
hardware required by the two-dimensional organization. .
Note that both of these organizations can be easily laid

out on a chip as no cocnnections need cross.

Another alternative organization is the cellular
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pyramid. Here each cell is connected to twc or more
"brothers" in its own string, a "father" in the string
above, and to its "sons" in the string below. For a binary

tree this results in a cellular triangle as shown in Figure

3.2. Quadtree and Octree decompositions have also been

implemented. These structures use less hardware than the -

La 2 2.

two-dimensional structure, but can perform "counting"

operations in O(log n) steps. Due to connections needed

- .

for local operaticns, however, chip layout poses some

problems. These structures have been used effectively for B
shape analysis and pattern recognition applications.

(Chandhuri, 1985)
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Figure 3.2 A Cellular Triangle ’1
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A final organization is termed cellular graphs. In

this structure cells are considered "nodes" of a graph. We
allow the "arcs" which connect the nodes to be arbitrary.
This type of "reconfigurable" structure has proved to be
useful in segmentation operations. The organization is
most effective when it has the ability to modify itself
(during processing based on the input) from the initial
configuration. This structure would be best used for image

processing at the region level.
3.2.2 Operations
As mentioned before, the principal advantage of using

<
L
cellular arrays is in local operations where each processor !9

can operate in parallel. At this point, we consider

.
e ’
A & 2 4

operations using the rectangular, two-dimensional cellular
logic array. As a very simple example, suppose we wanted .i
to average each pixel with its neighbors (a “"smoothing"

operation). Ignoring the special treatment required for

border pixels, this could be accomplished by having each
processor, in parallel, execute the following sequence of

instructions:

1. Add own value into a previcusly initialized
register.

2. Read and add all neighbor values to register.

3. Normalize. (Divide by total number of pixels in
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neighborhcod.) -
; 4. Replace own value by register contents. i
. :
. Given a repertoire of such instruction sequences, a wide .
3 variety of local image operations can be performed. Each
{ cell could store these as microprograms or the instructions

L could be "broadcast" to each cell as required.

In contrast, consider a conventional computer, having
only a single processor, attempting the same type of
operation. Here the averaging process can proceed only one
pixel at a time. Thus, the time required is directly
proportional to the image size. For an "n x n" image,
using a rectangular cellular array increases the amount of

hardware required by a factor of n2

but also decreases ;
the time required by a similar factor. :
A wide variety of image processing algorithms have
been developed for cellular arrays. A representative set
of such algorithms are briefly described here: .
(1) Local Operations: These are operations like the
averaging example previously described. The local image
property depends upon only the input values of a small set :
of the pixel's neighbors (and possibly the value of the ;
pixel itself.) Cellular arrays can compute local
properties in parallel where the amount of time required is
independent of the image size. Local properties are widely

used in image processing for smoothing, deblurring, edge

detection, texture analysis, etc.
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{2) Value Counting (histogramming): Here we desire
to count the number of times a given value occurs in an
image. For example, we can shift and sum these counts left
in each row and store the results in the leftmost cells.
Next, we shift the sums in the leftmost cells upward to a
final summation in the uppermost left cell. The total time
is proportional to the width and height of the image. This
method can be used to construct the grey-level histogram of
an image in 0O(n) time.

(3) Moments and Transforms: The moment value of an
image or the coefficients of the Fourier (or other)
transform may be computed using cellular arrays. Here we
multiply the image pixelwise by the appropriate basis
matrix and sum the results (PFPourier Transform). Each
summing step and "broadcasting" of basis matrix can be
accomplished in O(n) time, The multiplication is done in a
single parallel step (Rosenfeld, 1983).

(4) Connected Components: Given an array of O's and
l's, we can define local "shrinking" or "expanding”
operations. In the former, we collapse each component of
1's to a smaller size and in the latter the operation is
reversed. Time, of course, is dependent upon the component
size and the degree of change required.

(5) Region Properties: Properties of a region such
as its area or perimeter can be easily computed using
cellular arrays. From these properties region shape

features such as compactness, elongation, thickness, etc.
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LAl
;

can be determined.

3.3 Cellular Logic Computers

I e
.

Cellular logic computers, under development since the
1950's, are now in use for image processing in hundreds of
laboratories world-wide. (Preston, 1983) 1In this section :
we will briefly review several of these computers.

According to Preston, cellular logic computers can be

s s
AR

. divided into four major architectural types, as follows:

(l) Single-element Subarray Machines: Having only
one processing element, these machines appear to represent
an obsolete architecture. Examples of this type of
architecture are the Cellscan, GLOPR and BIP computers.
These machines were the first successful cellular logic
computers constructed in the 1960's.

{2) Multiple-element Subarray Machines: Computers

DDt

of this type are characterized by possessing multiple

II processors which operate under the control of a control

processor, Examples of computers having this type of

[. architecture are the diff3, PHP, PHP I1 and PICAP I1. The
: upper-bound for these systems is on the order of 500
million elements per second and is mainly limited by memory %
data rates.

(3) Pipelined Architectures: This type of

architecture involves multiple processors as in (2). Here,
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however, each processing stage feeds the next in a linear
chain of processors. An example of a current pipelined
cellular logic computer is the Cytocomputer. This computer
uses eight pipelined levels in processing input data. An
architecture of this type is fully utilized only when the
number of program steps is equal to the number of
processing elements.

(4) Full-array Processors: This category can be
distinguished frcem the others by the large number of
processing elements utilized. The processors are tightly
connected to each other and operate in concert. The MPP
contains 128 x 128 processing elements. Other examples of
this architecture, such as the Illiac-IV, STARAN, and
CLIP4, contain a smaller number of processing elements. In
image processing using these architectures, several
significant problems exist. For iterative operations the
"border problem” is severe, yielding large amounts of
overhead. Problems also occur in chip design when many
processors are integrated on a single chip. Specifically,
the number of pins per chip becomes unmanageable as the
number of processing elements is increased.

Preston's conclusion is that despite advances in VLSI
design, the multiple-element subarray processors or
pipelined processors offer the greatest flexibility,
economy, speed and programming advantage compared with the
other architectures. With sub-nanosecond RAM's on the

horizon for use in these machines, he predicts atandcnment
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of full-array systems.

in Table 3.1.

(Hwang and Fu,
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Some current image analysis
computers having the architectures discussed are summarized

1983)
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Table 3.1 Summary of Cellular Logic Computers
Machine Architecture Applications
Illiac-1IV SIMD, 64 PE's in Landsat images, radar
8x8 mesh signal processing
STARAN SIMD, 256 PE's in Image magnification and
each of 32 arrays convolution, cartography
CLIP4 SIMD, 96x96 PE's Image processing and
feature extraction
MPP SIMD, 128x128 Landsat image processing
PE's :
Cytocomputer Pipelined, 88/25 Biomedical image
processor stages processing
GOP Pipelined, 4 Image processing and
arithmetic pattern classification
Systolic Systolic pipeline Image processing, FFT
Processor
PICAP II MIMD/SIMD Image processing,
Computer graphics
FLIP MIMD, 16 General image processing
processcrs and pattern recognition
ZMOB MIMD, 256 Artificial intelligence
microprocesscrs and image processing
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Chapter 4 STRUCTURES FOR FEATURE EXTRACTION

4.1 Introduction

In Section 4.2 we present the basic structure of our
Feature Extraction Structure (FES). Using this basic
structure, we then derive two specific structures for the
extraction of two different qualitative features in Section
4.3. 1In particular, we examine the texture attribute of
"regularity"” and the shape attribute of "line trend" as
specific qualitative features. An integrated structure for
simultaneous multiple-feature extraction is discussed in
the final section of this chapter. 1In Chapter 5 we discuss
applications of these structures. The remainder of this
introduction provides additional background and development
for the FES design.

In the previous two chapters we have reviewed the
concepts of both associative processing and cellular logic
processing. Associative processing possessed the distinct
advantage of speed due to the inherent parallelism of the

associative memory. Speed was the primary advantage

Talan w s e ¥ n

presented for cellular logic processing as well. This was

due to the spatial parallelism of its structure. The
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primary cost for this speed, in both cases, was reflected
in the haraware required for implementation. In the 25
years since the conception of both of these ideas, however,
advances in VLSI design have dramatically decreased
hardware costs. This trend is expected to continue, and as
such, it is anticipated that larger associative memories
and sizeable cellular logic structures will be economically
feasible in the foreseeable future.

Cellular logic was also presented as the "natural"
structure for computer vision in Chapter 3. By augmenting
this structure with associative memory it would seem that a
more efficient system for computer vision would be
possible. Several existing associative array processors
were reported in Section 2.3. The major hypothesis of this
thesis is that the style of architecture resulting from the
"marriage"” of the concepts of associative and cellular
logic processing is the ideal style of architecture for
computer vision systems.

A comparison of the major implementations (processors
and computers) presented in the last two chapters, yields
only one large-scale implementation which possesses
associative memory and a cellular logic construction.

This, of course, is the STARAN computer system. The
STARAN, however, was not built specifically for computer
vision but rather as a general purpose system to be used
experimentally on a number of practical applications.

Additionally, the STARAN system, which possesses 32 arrays
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of 256 PE's, is much too massive in size and requires an

inordinant amount of control, to represent an ideal
computer vision system,

It is interesting to note that Preston did not
mention or reference the STARAN system in his article
(Preston, 1983). Recall from Chapter 3 that his conclusion
was that full-array processors may be abandoned due to
border problems, the number of chip pins required, and the
overhead required to process an image. As a result of
Preston's analysis, we have placed special consideration in A
the design of our structure to avoid these problems, i;

In the next section we present a structure capable of
performing picture processing. The output of such a
processor is a quantized measure of a gqualitative feature
which may be used for pattern recognition or
classification. The architecture is cellular logic and the
structure uses associative memory. As such, the structure
is small in size and scope compared to STARAN and
specifically designed for computer vision applications.

The problems of such structures, which were presented by
Preston, are solved in the design of our structure.
Similar work in this area has been done. In (Smith,

1983) an image processor which handles 256 pixels

simultanecusly is described. Called SCAPE (for Single-Chip
Array-Processing Element), the chip is basically a
variation on the CLIP-4, with bit-serial communicaticn

between chips such that only 24 pins are required for the
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package. In operation, the associative memory logic
selects pixels upon which data transformations may be made.
Additionally, the array structure is programmable. This
chip is one of the most complex yet developed for image
processing tasks, containing up to 140,000 transistors in a
6 millimeter square (Smith, 1983).

In our design, the associative memory is utilized in
a different manner., Rather then using the associative
memory to select pixels for impending operations, we will
use the memory for storing characteristics of the
preprocessed image. In the process cf feature extraction
we are able to access, in parallel, these characteristics
by content. Additionally, our design is much simpler since
only feature extraction is required rather than complete

image processing.

4.2 A General Structure

In this section we present the basic structure for
FES. (We assume FES will fit on a chip the size of SCAFE
since FES is much less complicated as far as hardware.) A
block diagram of the FES chip is depicted in Figure 4.1.
Easily seen from the figure are the facts that FES consists
tasically of a rectangular cellular logic array and

asscciative memory. We now descrikte each component ¢f FES.
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oy CONTROLLER OUTPUT OQUTPUT
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CELLULAR ASSOCIATIVE

- INPUT LOGIC MEMORY =
- >t}ARRAY CONTROL )
E

|
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Figure 4.1 Block Diagram of the FES

The input consists of six-bit grey-level values. We

*‘“.“—&l

have chosen this size because it is common in other
implementations. As discussed earlier, in Chapter 1, we l!
assume the sensing and digitization has been accomplished J
elsewhere. The input is received in a serial manner for
reasons mentioned later. II
The Controller is the programmable brain of the chip. ]
It controls the timing of operations conducted in the other ~§
components. Instructions are "broadcast" to the cellé of
the array from the controller. These instructions will
vary with the specific feature to be extracted. Keep in
mind that Figure 4.1 is a model of a generalized FES. It

is not adapted to extract a specific qualitative feature.

3 The Output Logic block will usually contain a

microprocessor. (In implementation this may be the same

processor as in the Controller.) 1Its purpose is to

L
L e l. l.

Al

accumulate and output the result of the operations
conducted on the chip as a feature. Like the controller,

the internal structure of this element depends upon the
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specific feature required.

The Associative Memory Control contains the
comparand, mask and indicator registers, as well as the
majority of the match logic required for the chip to
possess an operative associative memory. Word size and
other logic considerations will vary in this block
dependent upon the specific feature. The associative
memory cells, themselves, are colocated with the cellular
logic cells.

The Cellular Logic Array is redrawn in more detail in
Figure 4.2. Here we see the rectangqular architecture of
FES. The array is 20 x 20 cells in size. The interior 16
x 16 cells are bordered to indicate that these cells
possess an associative memory element. The pictorial input
is thus 20 x 20, but only 16 x 16 cells partake in image
processing by the FES. The border cells then simply
represent digitally that area of the image and provide the
information to neighbors within the interior as required.

We have selected this size for the FES because we
feel that implementation on a single chip is possible.

This is based upon the success of implementing the SCAPE
(of comparable size) on a single chip, as was reported
earlier.

The purpose of the border of cells may not be
intuitively obvious. The 144 cells comprising the border
represent considerable overhead. 1In this case, however, we

feel the benefits incurred outweigh the additional cost in
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Figqure 4.2 The Cellular Logic Array in FES,
Interconnections are represented by
proximity. Interior cells contain
associative memory elements.

hardware. Operationally, the border allows for accurate
data processing at the edges of the 16 x 16 array. Most
computer vision preprocessing operations, such as those
described in Chapter 3, require "pixelwise" computations
within a neighborhood of pixels. Our structure, therefore,
will allow for up to 5 x 5 sized neighborhood coperations.
If we want to "stack" FES's so that larger pictures may be
processed, we discover that extensive interconnections are
not required between chips. This overlapping essentially

reduces the required pin count of the chip by at least 64.

The pin count is also reduced due to the fact that input is
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serial. Thus, the pin count of this chip is not
unmanageable. Finally, a border cell is much more simple
than an interior cell. It has no processing function and
contains no associative memory element. Thus, this
overhead is not as significant as it appears.

A block diagram of an interior cell of the array is
depicted in Figure 4.3. Valid input is latched into the
input register, an internal PE register, as instructed by
the Controller. The processing element is then able to
perform arithmetic/logical operations on this data and
input data from neighboring cells as directed by the chip
Controller. The particular processed data (dependent on

feature) is then stored in the associative memory element.

ELEMENT ‘ MEMORY

ELEMENT
INPUT S(Input Reg>

CONTROL l PROCESSING ASSOCIATIVE

Figure 4.3 An Intericr Cell in the FES Cellular
Logic Array
The FES chip incurs some overhead due to the serial
loading of its cells. But, the chip has a manageable pin
count and when implemented together with other chips no

border problems are manifested. At this point, the

"general structure" may seem ambiguous or unclear. This is

due to the immense flexibility incorporated into the
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structure. In the next section we will examine specific
structures for specific feature extraction in order to

illustrate the power of this structure.

4.3 Specific Structures

In this section we adapt the general structure of FES
to a particular purpose. This will be accomplished in scme
detail for two features: the texture attribute of
"regularity" and the shape attribute of "line trend". Each
section ends with a summary of other features which may be
extracted using similarly adapted FES's. Example
applications of these specific structures will be covered

in Chapter 5.

4.3,1 "Texture" Structures

Despite the tremendous amount of research that has
been conducted, the field of texture analysis in computer
vision is a highly controversial and ill-defined subject.
According to Levine: "At present there dces not exist a
generally accepted model for texture" (Levine, 1985). And
"the notion of texture admits to no rigid description"
(Ballard and Brown, 1982). 1In this thesis we use the word
"texture" rather loosely, sometimes in reference to a
particular textural feature, and at other times to

represent the sum of all texture attributes.
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Much work has been done in qualitative and quantitive
analysis of texture. "Texture can be qualitatively
evaluated as having one or more of the properties of
fineness, coarseness, smoothness, granulation, randomness,
lineation, or being mottled, irregular, or hummocky."
(Haralick, 1979). Levine discusses how to quantify these
concepts mathematically. The analysis of texture from this
viewpoint is sketched in Figure 4.4, which has been

included to emphasize the complexity of this field.

TEXTURE

Collection
of
Regions

Primitive
Attributes

Spatial
Relationships

Grey-level Geometric Primitive Spatial

Attributes Attribute Region Organization
Types
Average||{Others Others Structurall|{Functional
Extremum Area Type Statisticall
Number

Figure 4.4 A Texture Paradigm
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Levine reformulates all texture analysis into just
two groups of analysis techniques: statistical and
. structural. We will not discuss the structural techniques
here, however, a good review of most existing computational

approaches to textural analysis may be found in (Haralick,

1979).
I(i,3) Y A(i,3) ~
1 2 é
Input Scalar Texture
Image Vector Attribute
Feature Array Data
Detection Aggregation

Figure 4.5 The Process of Statistical Texture Analysis

In Figure 4.5 we depict the process of statistical
textural analysis by a block diagram. Depending upon the
specific technique, transformation T, measures a
statistical feature. If the output of Tl is not
scalar, the data is usually compressed via transformation
T2. In this manner a texture attribute describing the
texture of the input image results.

Statistical technigues of texture analysis may be

further divided into three groups (Levine, 1985):

(1) Texture as Spatial Frequency: In this technique

the textural attribute of "regularity" is explcited.

A N
SO SRV IV N

Popular indicators of this attribute are the

autocorrelation function and the two-dimensional Fourier
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transform.

(2) Second-Order Statistics: Extremely complex
mathematically, these techniques yield gocd results for the
analysis of texture on a regional level. These methods are
primarily an extension of first-order statistics which we

N consider next.

(3) Simple Texture Methods: We will confine further
discussion of texture analysis to these technigues. The
idea in these techniques is to compute a histogram of the
input in transformation Tl and in transformaticn T2
to compute a corresponding textural attribute. (Refer to
Figure 4.5) These attributes are usually the so-called
"central moments" of the histogram: mean, variance,
skewness and kurtosis. The mean and variance are
indicators of the regularity of the input image. Symmetry
and peakedness are indicated by skewness and kurtosis
respectively.

N There are several popular variations in the
construction of the histogram. In a first method the
grey-level value of each pixel is used to make the

histogram. In another method, rather than these values,

the histogram is formed by some local grey-level property.
For example, the sum of the grey-level differences within a ::
neighborhood is often used. In a third method grey-level

*run-lengths", where run-lengths indicate areas of similar

grey-level values, are used to compute the histogram. In a

final method a property called local rank correlation is
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computed to be used in histogramming. Fairly complicated,

this method may be found in (Harwood, 1985).

Baving paused for this brief review of the methods of
texture analysis, we now proceed to adapt the FES for
textural feature extraction. Recall from Figure 4.5 that
two transformations are required for the extraction of a
textural attribute (or feature). If we design a specific
FES such that the cellular array and associative memory
logic can accomplish the transformation Tl' and the

output logic perform transformation T2, we will have a

specific FES for texture.

For an example design, we use the first variation
histogramming method mentioned previously. Figure 4.6 j
depicts a specific FES which will accomplish the l!

transformations required. 5

Once the input image has been serially entered into
the array, the next step is to latch the grey-level values
of each pixel into their respective associative memory
cells., Assuming that the grey-levels are quantized into 64
discrete levels, the associative memory will be six bits
wide.

The histogram is then computed via the associative
memory logic. In this case the comparand is simply a
six-bit counter and the masking register is not required.
The match logic compares the value of the comparand with
the values of all the associative memory cells in parallel.

The 1's which result from this comparison in the indicator
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register signify matches. Since the pixel array is
16 x 16 the indicator register must be 256 bits.

The indicator register is hardwired to the adder of
the Output Logic. The adder could consist of a carry-save
adder tree structure with a carry-propagate adder (KRuck,
1978). Using a 7:3 carry-save adder size this addition
requires seven adder stages as shown in Figure 4.7. (Other
"adder trees" are possible and, indeed, other adding

methods.)

NSt
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Total Hardware:

H oo r-howx

// 63 Carry-Save Adders
1 Carry-Propagate Adder
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Figure 4.7 The Output Logic "“Adder"
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The Output Logic microprocessor uses this data to
produce, when all grey-level values have been matched and
summed, a texture attribute such as the mean, variance,
skewness, or kurtosis. Each of these attributes can be
computed by "traversing"” the histogram once as discussed
above. For a more complete explanation of some of the
mathematics involved see Section 5.2 wherein this "texture
structure" is used in an application. For general
references, both (Ballard and Brown, 1982) and (Levine,
1985) cover these mathematics in detail.

The controller in Figure 4.6 is programmed to control

the operations detailed above. If we assume that the

associative memory search, some part of the adder stages,

and steps in attribute formulation operations can be made
to proceed in uniform periods of time, part of the process
can be pipelined for greater speed. 1In summary, the entire

process would follow these steps:

Input Digital Signals

Latch grey-level values into associative memory
Conduct associative search: counter = 0

Sum Indicator Register

Compute and sum "partial" texture attribute
Repeat Steps 3 - 5 for counter = 1 to 63

Output texture attribute

3 - 5 may be pipelined for efficient computaticn.
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The other simple texture analysis techniques
mentioned earlier could be accomplished using this same
structure with slight programming modifications to the
controller. Recall that instead of the grey-levels
themselves these variations required pixel-processing prior
to histogramming. It takes little imagination to see that
additional instructions could be broadcast to the cells of
the array between steps 3 and 4. These instructions would
allow for the computation of a local grey-level property or
rank correlation as described previocusly. In step 5, these
values would then be latched into the associative memory
element for histogramming and final attribute processing.

We have not attempted to derive an adaptation of the

FES which will accomplish the computations necessary for
the spatial frequency method or the second-order statistics
method of statistical texture analysis techniques. This is
beyond the scope of this paper. However, it seems entirely
possible that each can be implemented in a structure
similar to Figure 4.6. The only real significant
difference in these methods from the simple texture
analysis method is that of computational complexity. It
should be pointed out, however, that "comparison studies
have indicated that the performance of the spatial

frequency approach [ Fourier Transform ] is poorer than

that of other methods." (Levine, 1985).
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4.3.2 "Shape” Structures

"Shape" analysis is as large and nebulous a subject
as that of texture. Many theories of shape description and
recognition exist, where each attempts to explain some
specific aspect of the problem. The general approach is tc

describe a given shape in terms of simple shape features.

A characteristic of the method is whether or not the
original shape can be reconstructed from the descriptors.
Popular approaches may then be categorized as
information-preserving or non-informaticn-preserving based

upon this characteristic. A further distinction in shape

e e ....
. L e . Lo .
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analysis lies in the type of method employed. For example,

there exist spatial domain approaches and scalar transform
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techniques (Levine, 1985). -
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In this section we will restrict discussion of shape

.
]

analysis to the identification and extraction of simple
shape features. Exactly what constitutes a set of simple
shape features depends on the method used. 1In our
discussion we will simply think of a shape feature as an
indicator of a shape property. Virtually any adjective
used to describe a shape may be such an indicator. Some
examples may be perimeter, area, horizontalness,
verticalness, closure, curvature, eccentricity,
compactness, concavity, etc. Nearly all of these
indicators require preprocessing of the input image for

detection. The mcst common preprocessing steps are
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highlighting edges, threshholding, and boundary
determination.

To best illustrate how the FES may be utilized in
extracting a shape feature we consider an example. Suppose
the feature we desire is that of line trend, where we
define line trend as the sum of the measures of
horizontalness and verticalness. Specifically, we would
like to characterize the input image by its line trend. A
specific FES which will accomplish this operation is shown
in Figure 4.8.

Once the grey-level values have been entered into the
array, we perform a neighborhood operation. This operation
can be thought of as a masking operation where a mask which
highlights vertical or horizontal lines is applied to the
entire array (Figure 4.9). Each cell of the array performs
the operation such that the entire process is done in
parallel. Example masking operations are shown in Section
5.2.3. Further information on masks for edge enhancement
may be found in (Iliffe, 1984), (Wiejak, 1985), and
(Chaudhuri, 1983).

Another neighborhood operation, that of thresholding,
is now applied to the data in the array. For simple
thresholding each cell compares its value with a value
broadcast from the controller. If the cell's value is
lower, then a 0 is stored within the cell, otherwise, a 1
is stored. We now have a "binary" image stored in the

array. See (Rosenfeld and Kak, Vol. 2, 1982) for mcre
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X 0 Y X X X

X 0 Y 0 0 0

X 0 Y Y Y Y
(a) (b)

Figure 4.9 Masks for Highlighting Edges
(a) Vertical edges. (b) Horizontal edges.
Normally the variables X and Y are equal
but of opposite sign. Emphasis determined
by magnitudes.

information on thresholding. This image reflects either
horizontal or vertical edges of the input image depending
upon which mask was used.

We now compare the binary value of each pixel with
its neighbors . We arbitrarily define a pixel to be in a
horizontal line if it has a value of 1 and both its east
and west neighbors have values of 1 as well. Likewise, a
pixel is in a vertical line if it contains a 1 and both its
north and scuth neighbors contain l's. A 0 is stored in
the associative memory otherwise.

If all we require is this line trend information we
can restrict the size of the associative memory to only
two-bits wide. Once the neighborhood operations have been
completed for horizontal lines we store a 1 in the first
bit position of the associative memory cell if its
asscciated pixel was in a horizontal line. During this

same time, we can (sequentially within each step) perform
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the same operations for vertical lines and store a 1 in the
second bit position of the associative memory if the pixel
was in a vertical line.

We can now initiate an associative memory search for
horizontal or vertical aspects of the input image. The
Output Logic adder sums the number of occurrences and the
microprocessor computes the line trend attribute as a
scalar representing horizontalness, verticalness, or any
combination of the two such as their ratioc. A more
complete visualization of this process may be found in
Section 5.3 wherein we apply this structure as an aid to
image orientation. If the ratio of horizontal to vertical
measures was required, feature extraction would require the

following steps:

1. Input Digital Signals

2. Highlight horizontal/vertical lines via masking
3. Form Binary Images via thresholding

4, Compare pixel value with neighbors (E and W for

horizontal, N and S for vertical). Store line

"membership” in associative memory

S. Asscociative memory search for horizontal lines
6. Sum Indicator Register

.- 7. Repeat 5 - 6 for vertical lines

t 8. Divide sums and output ratio
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By adapting the FES similarly, other shape features
can be extracted. If the desired feature were perimeter, a
value of 1 could be stored in the associative memory if the
pixel was a part of the border of the object in the input
image. These l's could then be added, via associative
search and adder steps, to output a measure of the
perimeter based upon pixel size. In a similar manner we
could store a 1 in the associative memory if a pixel is in
the interior or boundary of an object. Summing this
characteristic would lead to a measure of the area of an
object in the input image. These computational steps,
simply described here, are non-trivial local operations.
See (Rosenfeld and Kak, Vol 1, 1982) for more information
on neighborhood operations and algorithms for ccntouring
(boundary determination).

For other FES structures which would efficiently
prcduce other shape features (some of which were mentioned
previcusly) all that is required is a decomposition of the
feature into a set of characteristics which can be computed

by neighborhood operations.
4.4 Multi-Feature Structures

In examining the specific structures presented for
*exture and shape, Figure 4.6 and Figure 4.8, the reader

shculd notice that the only differences which exist are in

*he width of the associative memory and in the components
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present in the Associative Memory Control. In operation,
of course, there are many differences in the amount and
type of operations performed in the cellular array.
Therefore, Controller programming is feature specific.
Also, note that the data stored in the associative memory
differs as to what characteristic it represents. Levine
considers both shape and texture attributes to be parts of
a greater image processing concept of image segmentation.
(Levine, 1985) As such, the fact that the resulting
specific structures are similar should not be surprising.
In summary, by modifying FES, it is possible to
produce a structure which is capable of extracting a simple
feature. 1If this is not an exciting development in itself,
imagine an adapted FES capable of extracting a small set of
combined textural and shape type features. We can
characterize the necessary changes in FES structure. This
would require a larger-width asscciative memory, perhaps
divided into fields for each feature. The Controller
programming would need to be complicated and efficient.
The output logic would need be more complicated so that it
could either serially or in parallel (by vectors) process
and output the attributes. A multi-feature extracting
structure of this type would seem to possess tremendous

potential in computer vision.
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Chapter 5 APPLICATIONS

5.1 Introduction

From a casual survey of computer vision literature
(See Bibliography) it is evident that a tremendous amount
of successful research has been accomplished with regard to
computer enhancement of pictorial information. The need

for such enhancement stems primarily from the physical

Lol % % e Ty vve
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inability to receive high enough quality input via

Ml
s’ "

receptors. For example, the input may contain noise or may

K

v
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not be in focus. 1In Section 5.2, an aid to focusing will
be developed by an application of the specific texture
structure (Figure 4.6).

The second major application, presented in Section
5.3, will be an application of the line trend structure
(Figure 4.8) which was also developed in Chapter 4.

Imagine, for example, a remote sensing device of some type

.
'Aa'.

which observes a conveyor belt carrying automotive parts.

Further, suppose this device is part of a system
responsible for identifying and counting these parts for
inventory purposes. Identification is accomplished
ultimately by template matching of the input image to a

library of part images stored in memory. By using an
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implementation of the line trend structure to automatically
control rotation of the sensing device, the part image
could be properly oriented such that the process of
matching would be easier.

In Section 5.4 additional applications are briefly
discussed for the general structure developed in this
Thesis. By no means a complete listing of possible
applications, this section serves to emphasize the
versatility and power of an associative preprocessing

structure for qualitative feature extraction.

5.2 Focusing by Texture Analysis

In photography, focusing is extremely important.
This industry has placed much time, effort, and expense
into designing systems which will focus automatically. As
a result, there exist slide projectors which focus
automatically based upon maximizing the reflected light
intensity received from the projection. There are cameras
and video equipment which accomplish the focus process via
an acoustic system which determines object range. Other,
more sophisticated methods exist or are in the research
stage, but nearly all of these systems require external
apparatus such as sound or light sensors. It should be
possible to develop a system which can focus based only
upon the pictorial input.

A new product on the market, "from the mind of
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Minolta", is a line of cameras (The MAXXUM 7000 and 9000)
which possess a SLR Autofocus feature capable of focusing
based only on input data. The system incorporates twin
separator lenses which project dual images on CCD sensors.
A microcomputer compares these signals with a reference
signal thus providing controls for the lens movement. When
these signals are "in phase"” the picture is in focus. The
system is composed of optical, electrical, and mechanical
components under the direction of a main CPU. The other IC
components include a CCD sensor, autofocus interface IC,
ROM ICs on each lens, and autofocus CPU, which total to
over 150,000 transistors. The controlled four-speed
micromotor allows for focusing of the lenses at a rate
substantiating Minolta's claim that "only the human eye
focuses faster." (Information taken from Minolta's MAXXUM
7000 and MAXXUM 9000 advertising brochures.)

Despite Minolta's success, their system seems far too
complex. In this Section we will use the texture structure
and first-order statistical method of analysis to construct
a focusing system which can focus using only the input iﬂ

data.

5.2.1 Development

In order to focus based upon the input, a parameter

of the input which changes with a change in focus must ke

develcped. Consider the digitized input "scene" in Figure
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CA A

5.1. Here the values represent a quantized level from 0 to
63 of the light intensity received on the sensors via an

A/D conversion. The scene depicts a rather bright, small

h I RN
ST

square block on a dark background.
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Figure 5.1 A 16 X 16 Pixel "Small Block"

In Figure 5.2 the same "picture", but not in focus,
is displayed. Note that the values have been effectively
"smoothed." Smocothing evokes an analogy te physically
changing the texture of a surface. Smoothing here does
make the texture of a pictorial input less rough. As such
we consider a first-order statistical approach to the
textural changes that occur in the pictorial information in
the focusing process. If the data from these pictures are

placed into histograms an effect of this smoothing is

PR

apparent, as shown in Figure 5.3.
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Note that in each picture the sum of the individual
intensity values is the same. In this case we have a
constant "power level" of 200. Therefore, as can be easily
verified, averaging the histogram would not provide the
desired parameter with which focusing could be
accomplished. Additionally, it is seen that the tendency
is for the bright areas of the picture to darken and the
dark areas to brighten as the picture is defocused., At
some defocused point it seems likely that the histogram
will converge with all pixels having the same value equal
to the average power.

The obvious difference between the two histograms is
that of distribution of intensities. . As such the
statistical Gaussian measure of standard deviation would
seem promising. Recall that the standard deviation is the
square root of the variance which was shown to be a texture
analysis tool in Chapter 4. Define the mean MN and the

standard deviation SD by:

b
MN = (l/nz)ZI*H(I)
a

b
SD = sqrt| (l/nz)ZEfH(I)(I-MN)2 ]
a

where H(I) = Number of pixels with intensity I ;;
I = Pixel intensity
a = Minimum pixel intensity = 0
b = Maximum pixel intensity = 63
n = Size of the n X n picture = 16
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Computations performed on the picture data in Figure
5.1 and Figure 5.2 yield the same mean equal to 0.78 as
expected. The standard deviations differed, being 24.80
for the former and 12.66 for the latter, Thus, we have a
measure for the textural difference between focused and
unfocused representations of the same picture. The
standard deviation seems promising as the parameter by

which to focus.

5.2.2 Algorithms

In this section we assume the standard deviation (SD)
to be a reliable measure of focus as suggested, but not
proven, in the preceeding section. As such, we develop a
simple algorithm, we will call the Single-Step Algorithm
(8SA), by which focusing may be accomplished using the
texture structure detailed in Chapter 4. A flow-chart for
this algorithm is shown in Figure 5.4.

In summary, the algorithm begins by first computing a
standard deviation for the initial input. The lens is then
moved in a positive direction (closer to the sensors) and
the standard deviation is computed for this new input. The
standard deviations are compared. If the second
measurement is higher in value the direction for lens
movement is correct and the algorithm directs repetition of
positive lens movement and associated standard deviation

computation and comparison until a value for the standard
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( starr )
INPUT )
PICTURE
DATA
COMPUTE
SD 1
INPUT INPUT )
PICTURE PICTURE
DATA DATA
- v
SpD 1=SD 2 | SD 1=SD 2
COMPUTE COMPUTE
SD 2 SD 2
YES 2 No| YEs 2 NO
SD 2>SD 1 SD 2>SD 1
- ?

Figure 5.4 Flowchart for the Single-Step Algorithm

deviation is computed, which is less than the previous. At

this point, the lens is moved once in the negative

direction to insure correctness. Finally, the lens 1is
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moved once in the positive direction and at this point the

picture is in focus. <Conversely, had the second

measurement been lower in value than the first, lens N
»

movement in the negative direction would have been

indicated. The algorithm would then proceed iteratively as

before until once again a smaller value was encountered for

the standard deviation, at which time the lens would be

moved once in the positive direction to insure focus.

Table 5.1 Simple Example Data

Lens Position Standard Deviation

(Relative to Focused Position) iﬁ
-4 1 B
-3 2 ﬂ]
-2 3
-1 4 =
: > ]
1 4 3
2 3 R
3 2 :
4 1 |

For an extremely simple example, suppose that at

»

¢ e v e

focus a picture input results in a standard deviation of

"5." When the picture is defocused by lens movement in
either direction the resulting standard deviations are
lower, as shown in Table 5.1. Figure 5.5 shows how
focusing would occur for three different initial situations
according to the Single-Step Algorithm applied to this

example.
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Noans

Lens Position
Step -4 -3 -2 -1 0 1 2 3 4 SD 1/SD 2 Comments

1 * 3/ - Lens +
2 * 4 / 3 Lens +
3 * 5/ 4 Lens +
4 * 4 /5 Lens -
5 * 5/ 4 Lens -
6 * 4 /5 Lens +
7 * IN FOCUS

(a)

Lens Position
Step -4 -3 -2 -1 0 1 2 3 4 SD 1/SD 2 Comments

1 * 3/ - Lens +
2 * 2/ 3 Lens -
3 * 3/ 2 Lens -~
4 * 4 / 3 Lens -
5 * S / 4 Lens -~
6 * 4 / 5 Lens +
7 * IN FOCUS
{b)

Lens Position
Step -4 -3 -2 -1 0 1 2 3 4 SD 1/8D 2 Comments

1 * 5 / - Lens +

2 * 4 / 5 Lens -~

3 * S / 4 Lens -~

4 * 4 /5 Lens +

5 * IN FOCUS
(c)

Figure 5.5 Focusing Example. For the simple exampie
using the SSA when (a) lens too far from sensor, (b)
lens too clecse to sensor, and (c) initial position
at focus. Lens position relative to the focused
position,

As menticoned previously, the algorithm presented is
simple and correspondingly inefficient in that it focuses
one lens movement at a time. This is especially apparent
in the example where the algorithm directs four lens

movements to focus a focused picture. The performance of

67
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the algorithm can be expressed by the number of lens
movements required to focus. (This is proportional to the

time required to focus.)

M=1+D+3

where M number of lens movements

o
I

number of lens movements frem focus
1 movement required to determine direction

3 movements required for convergence

Since the basic operation performed by the algorithm
is to find the maximum value of the standard deviation,
other more efficient algorithms are possible. Some
possible algorithms are:

(1) 1In-Echelon: Once the correct lens direction has
been determined the algorithm could direct a "jump”" of a
specified, constant number of lens positions. Once this
"coarse-tuning” is completed the Single-Step Algorithm
could then "fine tune" the focusing process. Performance
would be improved for pictures well out of focus.

M =1+ D/S + MOD_.D + 3

S

Where S = Jump size

{2} Binary: Once the correct lens directicn is
established the algorithm could direct a jump half-way to

the other end of the lens movement capability. The correct
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direction from this point would then be determined. Based
upon this determination, the next jump would either move
the lens half-way back to the initial position or move the
lens another half-distance towards the lens stop position.
The process of (1) determine direction and (2) Jjump
half-way would continue until convergence at the point of
focus. Obviously, this method requires memory of past lens
movements. An example of this algorithm is given in Figure
5.6. Here the range of lens positions is represented by
the "dots", "X" is the position where the picture is in

focus, and the numbered points indicate current lens

. . . . . . . . . . . . . . . . . . . . . . .

1 2 *
(a) Direction determined to be to the right. Jump

is 11 positions to right. (Half the distance to
lens stop)

RSN i é R
(b) Direction now left. Jump left 5 positions.

X
SRR i é R
(c) Direction still left. Jump left 3 positions.

X

.
.
.
.
.
-
.
.
.
.
.

.
.

R i i o

(¢) Direction right. Jump 1l position to right.
Picture is now in focus.

Figure 5.6 Operation of the Binary Algorithm
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position. The positions denoted with a "*" must be
maintained in memory. The number of lens movements would
depend upon the current lens position, the direction, and

the focusing range. Performance would then be con the order

of:
+ L - -3

[1 OGZ(Pmax Pcurrent) ] 2y
-}

S

—

&

g

—

-

j£31

=

a g
o4 N
-t 4
a 3
Z 3
& .
™0 Eq

o}
LENS PCSITION
Figure 5.7 Standard Deviaticn Versus Focus Pesition
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(3) Slope: Once the correct lens direction is
established the algorithm would direct a variable length
jump inversely proportional to the magnitude of the
difference between successive standard deviations. Of
course, this would require that the standard deviation
versus input curve be monotone on each side of the peak.
Performance would naturally depend upon this curvature.
For example, three such possible curves are shown in Figure
5.7. This method would work well for curve A since the
slope increases as the point of focus is approached. The
smaller the slope computed the larger would be the jump
directed by the algorithm. For curve B the same, but
opposite, procedure would be used since the slope decreases
to the point of focus. If the curve resembled curve C,
where the slope does not vary, this method would not be
significantly better than the Single-Step Algorithm.

Obviously, these algorithms are much more complex
logically when compared to the Single-Step Algorithm. As
such, implementations would require more controls and
require memory to keep track of where the lens had been.
This means more hardware and greater cost. On the other
hand, the Single-Step Algorithm requires no memory of lens
movement, requires simple controls, requires minimal
hardware, and always converges to focus (providing the

curve resembles those of Figure 5.7).

L
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5.2.3 Modeling Input

At this point a structure (Chapter 4) and an
algorithm (Section 5.2.2) have been devised for focusing
pictures in our application. The next step is
verification, but due to the limited resources available to
this researcher, input will be modeled. In (Levine, 1985)
a low-pass operator for the spatial frequency domain is
used to blur or defocus pictures. For different degrees cof
blurring, templates of successively larger size, but
equally weighted, were used. This basic idea is used to
develop a method which will produce our required input.
Input, in this case, refers to a series of digital pictures
representing focused and successively blurred images of the
same scene. We desire this input to approximate the real
images that would occur using an imaging system and, as
such, we begin with a basic image model.

Point projection is the fundamental mcdel
traditionally used for the imaging process conducted by ocur
eye, camera, or other imaging devices. These devices act
like a pin hole camera in that the image results from
projecting scene points ontc an image plane. (Ballard and
Brown, 1982.) An schematic representation is shown in
Figure 5.8. 1In part (a) of this fiqure is a diagram
depicting the point to be in focus. This occurs since the

imége plane is at a distance from the lens which equals the

focal length f of the lens. In parts {(b) and {(c) of the
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Image Plane Lens Scene

!l (a)
9
b

(b)

(c)
Figure 5.8 Point Projection Model. 1In (a) the
point is in focus, (b) out of focus positive

direction, and (c)} out of focus negative
direction.

same figure the point is shown to be equally out of focus.
In the former the distance between image plane and lens is
less than f (termed positive) and in the latter this

distance is greater than f (termed negative).
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Several assumptions are necessary for the model. We
will assume that fringing effects due to different light
wavelengths are negligible. This will allow us to use an
image which represents blurring in the positive direction
for an image in the negative direction where the absolute
difference between the lens position and focal length is
the same. The light from the scene point is assumed to
impact the image plane in a circular, uniform pattern when
defocused. Other photometric concepts such as variations
in sensor sensitivity to light wavelength, scene geometry,
reflectance, illumination, etc. will be assumed to be
negligible as well. The sensors are assumed to be linear
with respect to light energy.

We now expand the point into an "area" or “"patch,"
and retain the assumed behavior. Additiocnally, we will
ignore the fact that the image is "reversed" when out of

focus in the negative direction as this does not affect

standard deviation calculations. An "area" consists of a

neighborhood of points. By sampling, the scene can be

P L PR
LI I R B
PP ) (PR

divided into an array of M x N areas. An array of
photosensitive devices is placed in the image plane such E’
that each device measures the total "brightness" or "power"”

of a single area of the scene. The power incident on the

L
Bodlade 2 'a'a

sensor is converted to an electric signal. The analog
signal is then converted to digital and guantized intoc a
set of grey level values. The result of this sampling and

quantizing is a digital picture. In our modeling the scene
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is sampled such that a 16 x 16 "pixel" picture is produced

where each "pixel" value may range from 0 to 63 in grey
level values. Resolution can be expressed by the product
of the number of grey levels and the number of pixels in a

picture. (Rosenfeld and Kak, 1982)

|
| V222
l@ o)
|

(a) (b)
Figure 5.9 The Image Plane., Here (a) represents

incident light when the scene is in focus and
(b) when the scene is out of focus.

Figure 5.9(a) represents a portion of the image
plane. Each square is a sensor in the sensor array. The
shaded area is that area on which light strikes from one i!
scene patch when the picture is in focus. If the lens is 1
moved in either direction, the scene is defocused, and the

shaded area becomes larger as shown in 5.9(b). The total

power of both shaded areas are equal. Therefore, the

center pixel in (b) has a grey level value less than the o
ey

center pixel in (a), having "given" some percentage of its i
“‘

power to neighboring pixels.
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Imagine the entire sensor array as above. When
defocused, each pixel's grey level value would be comprised
of a percentage of the value it would have at focus summed
with amounts received from its neighbors. This idea is
used directly to form templates which will be used as
spatial frequency operators. However, these "masks" differ
from the equal valued templates used in (Levine, 1985} in
that they are weighted in a manner such that defocused

images computed using convolution approximates real input.

The mathematical process used is discrete 2-D
F convoluticn. (Rosenfeld and Kak, 1982; Ballard and Brown,
1982) Given two functions f and g, where f represents the

- focused picture and g the template or mask, convoluticn can

be expressed as:

+#m  +n

C(lp]) = 2 2 g(l"plj—q)*f(prQ)
p=-m gq=-n

Intuitively, g is "rubbed over” f and the value of the
convolution at any displacement is the sum of the preoduct
of the relatively displaced functions f and g.

Twelve different masks were created to produce a wide
range of defocusing as shown in Figure 5.10. Part (a)
shows the focused situation. We ignore the shape

difference between the square pixel and the circle which

represents the incident light. Their areas are the same.
The masks represented for "fuzz factor 0" is then a 1 x 1
template with value 1. Convolution of this mask witl the

focused picture yields the same picture.
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(a) Fuzz Factor 0 ﬁ
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(b) Fuzz Factor 1 or -1 (c) Fuzz Factor 2 or -2 "
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(f) Fuzz Factor 5 cr -5 (g) Fuzz Factor 6 or -6 .
Figure 5.10 Blurring Templates 'y
(Continued on the next page.)
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(h) Fuzz Factor 7 or -7 (i) Fuzz Factor 8 or -8
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(3} Fuzz Factor 9 or -9

(k) Fuzz Factor 10 or -10
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Figure 5.10 Blurring Templates (continued)
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In part (b) we have expanded the circle (increased -
the radius by .25 where each square represents an area of
1.) This represents a lens movement in eiher the postive 3
or negative direction away from focus. The resulting mask -
for fuzz factor 1 or -1 is then 3 x 3 in size with the 5
values shown. Note that unit squares partially covered by
the circle have a value proportional to the area covered
and are computed to the nearest hundredth. The same v
process is completed for masks 2 - 12, as shown in parts
{c) - (m), to produce masks with fuzz factors
2,~2,...,12,-12., When these masks are convolved with the
focused picture different pictures representing greater and
greater degrees of blurring result. (Normalization is
accomplished after convolution by dividing each C{i,Jj) 'j
value by the area of the circle. This normalizaticn
insures that the total power of the resulting pictures
remains constant.)

Modeled input can now be produced for analysis using
the following procedure:

(1) Select a scene and digitize into a focused

picture.
(2) Convolve the focused picture with Mask 1.
{3) Normalize.
(4) Repeat steps (2) and (3) using Masks 2 - 12.
A PASCAL program which implements this procedure (and

performs other tasks) appears in Appendix Al.
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5.2.4 Experimental Results

Eight focused pictures were selected as examples to
test our focusing algorithm (Section 5.2.2). Effort was
expended to make the pictures possess different features
with respect to size, power, and regularity. These

examples are listed in Table 5.2.

Table 5.2 Example Inputs

Example Title Dominant Features

Y
1 Small Block A Low Power, Small Size |i
2 Small Block B High Power, Small Size K
3 Large Block Large Size, High Density .
4 Large Square Large Size, Low Density "
5 Checkered Diagonally Periodic ]
6 Striped Vertically Periodic -
7 Random Randomness Ii
8 Mixed All the above 4

By running the PASCAL program of Appendix Al on an

APPLE II Plus computer, these example pictures were blurred
following the procedure presented in the previous section.
The eight sets of resulting data appear in Appendix Al.
The program computes, as well, the histogram and associatec
standard deviation for each image. This data is alsc
contained in Appendix Al following each blur set.

The final results of the experiment can best be seen
graphically. In Figure 5.11 the standard deviations cf

each histogram set versus the fuzz factor are graghed.
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Figure 5.11 Graphical Results. Standard deviaticn
versus fuzz lactor display for the data derived
from the example inputs.
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(Note that in Appendix A2 only thg positive directicn
blurring is reflected in images, histograms, and standard
deviations. Likewise only this data is graghed. But,
recall that the negative direction data is a mirror
reflection of the positive direction data displayed.
Therefore, when looking at Figure 5.9 realize that the
graphs are "folded over" and that the center of the graph

is the wvertical axis.)

5.2.5 Analysis and Conclusions

Casual examinaticn of the graphs in Figure 5.11 shocws
that each of the inputs yield a graph which peaks at fuzz
factor 0. Elsewhere the standard deviation decreases in
value as the blurring is increased, with the exception of
the periodic inputs. The obvicus conclusion is that the
Single-Step Algorithm implemented on the texture structure
will accomplish successful focusing for the aperiodic
inputs. Results show that size, power, and density input
features do not affect this success. Each curve can be
approximated by a curve of the form: y=a/x, where a is a
constant. The "bumpiness" of the curve is assumed to ke
caused by round-off errors.

The results from the random input are better than
expected. "Noise" in pictures is generally represented by
random input. We conclude that "noisy" pictures car be

focused successfully by our application. {aAltrhough data :s
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not provided in this report, this has been shown
experimentally. When a random picture is added to an
object picture, via matrix addition, the resulting standard
deviation graph for this "picture sum" possesses the same
well behaved characteristics for focusing.)

Examination of the graphs produced from the periodic
inputs reveal that our simple Single-Step Algorithm will
fail unless we begin focusing very near the actual focus,
Why the data does not follow the experted results is due to
the convolution process performed. Recall that convoluticn
is simply multiplication in the frequency domain of the
Fecurier Transform. If a picture is periodic the
correspending transform will contain impulses. These
components in the transform are responsible for the
oscillating appearance of the pericdic input results. This
effect can be alleviated by surrounding the input picture
with a border of zeros. (Levine, 1985) (When,
experimentally this was done to our periodic inputs the
results were, in fact, similar to the results of the other
nonperiodic inputs.) This is not a good solution, however,
as a large "border of zeros" is not physically practical.

It should be noted that in a real imaging system

obtaining a perfectly periodic input is extremely

difficult. Even if the scene were perfectly pericdic the
f- edge effects caused by the lens would create some
i distortion in the picture. Considering this, all we need

at most is a slight modificaticn to our algorithm for

P .'_ R S o . . - . . . .-
. e . "-\.‘J'“ A e e T T e T T e ey S . . R ) . L
(PP N I ) V- BS. B B G B i S I YRS L Y VST TR T SR LIPS D TR SPRPEPCIIY W D -SSP A S Py




UNCLASSIFIED

AD-A169 147 SPEC{RL ASSOCIATIVE PREPROCESSING STRUCTURES F

TIVE FEATURE EXTRACTIONCU) ARNY MILITARY

PERSONNEL CENTER RLEXANDRIR VA W C ll”? liFJ

§ss




VLAl e b A A N VAR RS A A e A NEADAE A S B 0 A i i g S B A . N
e
Lo i b -
—_— e {32
=2
b
L &t e
— e
22 s, e
Vi R
:
:
!
L.
hl
:'
3
h
)
L e e e S .




:
%
’
.
r

S
&
-
9
.
:

T8 ¢ |

PR

PR NN T N T N W W XN y . o™ g S uis b meoig

- 3 ~¥ W@ AT T LW WY Y Y -, Wy

84

successful focusing to occur. Note that the pericdic input
graphs in Figure 5.9 have, at focus, a peak value much
greater than at any other point. The other peaks are
relatively small in comparison. (In a real system
distortion would make these peaks even smaller!)

Therefore, we could modify our algorithm such that
convergence does not occur unless the peak is greater, by a

specified amount, than the surrounding points.

5.3 Orientation by Line Trend

In Section 5.1 we introduced an industrial situaticn
where proper image orientation could aid in the process of
template matching. There are many more applications of
this process than in the monitoring of a conveyor belt of
parts. For example, microscopic cells and cellular
structures in microbiology have been identified using
template matching procedures (Sternberg, 1983). Template
matching has been successfully used to differentiate and
identify alphanumeric characters (Hall, 1979).

"The simplest approach tc scene matching is called
template matching" (Hall, 1979). Basically, template
matching may be described as calculating the measure of
similarity of an image and a template. This is done by

shifting the template across the image aad at each position

determining the "correlaticn". The result is a
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"correlation array" which may then be analyzed for
identification or classification (Ballard and Brown, 1982),
Besides the two references already mentioned in this
paragraph, more information on template matching may be
found in (Levine, 1985). This reference has a particularly
good explanation of the mathematics involved in template
matching.

It should be obvious that if the template and the
image are not aligned, match results will be, at best,
misleading., Thus, a good deal of additional processing is
required on the image or the template in aligning the two
pictures for valid matching results. In order tc make this
process easier, we will apply the sh;pe structure which was

developed in Chapter 4.

5.3.1 Development

The basic idea for this application is that if we can
orient the image with regard tc some parameter, then the
number of templates required to be stored in memory for
matching may be minimized and the amount of image
processing required for alignment will be greatly reduced.

For example, suppose the binary representation of an
image (16x16) contains a rectangular object. 1In memory we
have stored the same object as a template. These pictures
are shown in Figure 5.12. From the figure it is easy to

see that good match results will not be possible because
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0 0000O0CO0DO0OCOOOOOOO
000001111 0000000
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0000010010000000 111111
000001001 0000O0O0CO0 100001
000001001 00O0CO0OO0O0O 100001
000O0O0O111100000O00 111111
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0000C0000OGOO0O0OCGOOCO

Binary Image

Figure 5.12 A Template Matching Example

the pictures are not aligned. We could expand our memory
and store another template of the object at this
orientation, or we could rotate, via processing, the image
to get better results. Now suppose the rectangle in the
image was oriented such that there were no horizontal or
vertical edges (at an angle). Obviously, we do not want to
store many templates of the same object. Likewise,
excessive image processing for transforming the image
through 360 degrees of rotation is undesirable. A system
that would orient input images, then, would be a tremendous
aid in template matching.

Based upon this example, it would seem that good
parameters for orientation of the input image would te
"verticalness" and "horizontalness". In the example akove,

if the input image was maximized with regard tc either
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horizontalness or verticalness only one template would need
be stored and no additional processing would be required on
the image for alignment.

We note that the example object, a rectangle, is
symmetric in shape. Other objects may not have this
property. Therefore, when the object is oriented with
regard to horizontalness, there will be two possibilities
of the resultant image where one is an upside-down version
of the other. The same comment applies to orientati n by
verticalness, where two mirror images are possible. This
is not considered to be too great a problem. Rotation of
the input image by 90 or 180 degrees is a very simple
procedure.

In our application we will use the shape structure of
Figure 4.8 to extract a feature, which is a measure of the
sum of verticalness and horizontalness. (Hereafter
referred to as the HV Sum, this sum will be maximum for a
line which is either vertical or horizontal and less at

other angles.) The methodology for this extraction was

described in Section 4.3.2. This measure will be maximized
by rotating the sensor/lens portion of the vision system
with respect to the scene. Template matching is, thus,
made easier as only one template is required per object in
memory and, at most, only a couple of simple image
transformations (90 or 180 degree rotations) would be

required for angular alignment.
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5.3.2 Algorithm

Based upon the previous discussions we will assume
that the HV Sum is a reliable measure of angular alignment.
As such, we develop an algorithm to accomplish this
objective. A flow chart for this algorithm is shown in

Figure 5.13,

START

INPUT
PICTURE
DATA
L
COMPUTE
SUM1
: ROTATE ROTATE
E LENS + LENS -~
< INPUT INPUT
. PICTURE PICTURE
- DATA | DATA
L SUML=SUM2 L SUM1=SUM2
-
Y
Q COMPUTE COMPUTE
,_- SUM2
NO

ROTATE
- LENS +
.
. Figure 5.13 Flowchart of Orientation Algorithm
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Note that the only differences between this algorithm .
and the Single-step Algorithm (Figure 5.4) are in the type iy
lens movement and feature computations.

Y Using this algorithm to manage the activities of the
line trend structure will orient scenes composed mostly of "
parallel rectangular areas to one of four possible o~
positions: right-side-up, upside-down, sideways, and
inverted sideways. A worst case for algorithm performance
would occur for objects initially oriented 45 degrees from
the desired position. As was the case for the focusing
algorithm we expect that more efficient algorithms are
possible, although these will not be discussed here. The

algorithm presented would be a part of a higher level

[ LR A

algorithm for template matching.
5.3.3 An Example

In this section we use a simple, hand-produced
example to illustrate the activities of the line trend
structure that are involved in calculating the HV Sum.
(Review methodology presented in Section 4.3.2.) The
:: object we will use is a simple image of a "house" as shown

in Figure 5.14 (a).

. In Figure 5.14 (b) and (c), we show the results of

(after thresholding) applying horizontal and vertical masks

Iy

0

to the input picture. Next we apply the operation which

determines line "membership" in either a vertical or a
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(e) Matrix of values which

(d) Matrix of values which

are stored in the second

bit position of the

are stored in the first

bit position of the

associative memory.

associative memory.

Example Data Transformations for HV Sum
Calculations

Figure 5.14
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horizontal line. Recall from an earlier discussion that to
be considered part of a line the individual pixel must be
within a line of at least three pixels. This data, €
respectively, is then stored in the associative memory, as o
shown in matrix format in Figure 5.14 (d) and (e). The
first matrix represents the first-bit values and the other
matrix represehts the second-bit values of the two-bit
associative memory used in the line trend structure (Figure
4.8).

To complete the computation, the Cutput Logic would
then sum the values in each bit position of the associative
memory. Finally, these sums would be combined to form the
HV Sum. In this example the HV Sum is equal to 32. -

We have purposely selected a house image which was
already oriented for simplicity. It is obvious that if the
house was at an angle the HV Sum computed above would be
smaller. It should be equally obvious that the house could
be oriented, depending on its original representation, to
an upside-down or either cf two separate sideways
representations, All four representaticns would possess
the same HV Sum as defined previously. If we graph this

sum versus rotational positicn, a graph such as shown irn

Figure 5.15 is to be expected. The peaks of the graph
represent rotations of the object where the HV Sum is a
relative maximum. (The curve has been drawn tc highlight
these peaks and may not necessarily have this smooth

shape. )
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Figure 5.15 HV Sum versus Position Angle
Orientation occurs at the "peaks" and

x is dependent upon initial object
position.

5.3.4 Conclusion

Based upon the single crude example of the previcus
section, we conclude that an application of the line trend
structure to orient the sensor/lens of a vision system
seems viable. One very simple experiment is not sufficient
to prove successful results in all cases, and the

discussion of "future work"” in Section 6.4 suggests hcw to

develop more evidence.
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5.4 Other Applications

In this section we consider, in rapidly decreasing
detail, four possible applications for the FES. These
applications involve more than the determination of a
single feature. Therefore, an integrated or multi-feature
FES would be required. The power and versatility of this
structure is such that a comprehensive list of applications
is not possible.
A first possible application continues in the theme
of automatic sensor control for visior systems. 1In this
application the desire is to utilize the FES such that a
feature, which can be used to control the "zoom" of a
J vision system, is extracted. This could be used as an aid
'Z to template matching by assisting in the size alignment of
image and template. The FES should then be able to
determine (1) the size of the object in the input image,
(2) recognize it as being toco small or too large, (3)
direct lens movement for magnification, and (4) refocus.
In step (1) the image would need to be edge
highlighted and thresholded. The next operation would be
an area determination. Step (2) would involve the
comparison of this area to a programmed, desired area Lkased
upon system resclution tc determine zoom direction. Step
(3) would be accomplished by the algorithm controlling the

FES and Step (4) could be programmed to occur after every
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zoom lens movement. All of these steps have been discussed
previously in the text of this thesis, therefore, this
application seems reasonable.

In a second example, suppose we have aerial images as
input. What is desired is an estimate by vegetation type
of crop yields. (Or maybe we would like an estimate of the
area of vegetation destroyed by pests, drought or fire.)

We assume that these estimates may be made by the
analysis of a couple of texture features, a color feature
and a shape feature. The algcrithm for our second
application would then be very complicated. By extracting
the average, variance and color features, it would seem
that quite a number of vegetation types could be
distinguished. This information could be stored in an
associative memory comprised of three fields. Area (the
shape feature) computations could be made for each
vegetation type. Based on these areas an estimate of crop
yield could then be determined.

In a third situation inspired by a realistic need at
the researcher's university, suppose we want to identify
the composition of a bushel of seeds by seed type. (Or
maybe determine the percentage of white to red blood
cells?) An expert in seeds (cr blocod cells) woulé need to
define differentiating characteristics. If these
characteristics can be expressed as extractakle features,
there is nothing to preclude the successful application of

a FES for preprocessing in this situaticn.
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Finally, as a fourth application, consider a remote
. vision system (encircling Mars; in a radiocactive
environment; at the bottom of an ocean). The system is
required to have the capability of focusing, rotating and
zooming with regard to observed objects under preprogrammed
control. Continuous transmission of this system reports
observations to its owners. Granted, the programming for
such a system would be a difficult task, but is it not
intuitively obvious that a valid FES application exists

here?
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Chapter 6 SUMMARY

6.1 General

The general conclusion of this thesis is that the
marriage of the principles of associative memory and
cellular logic arrays provides for the design of
preprocessing structures that are ideally suited for
computer vision applications. Furthermore, such a
structure seems to be capable of operation in a real-time
environment.

In this chapter we will review the concepts and
conclusions presented in our investigation of design
concepts for special associative preprocessing structures
for qualitative feature extraction. 1In Section 6.2 we
analyze the success of the FES with regard to the goals and
objectives established in the Introduction. The next
section relates an estimation of the performance of the
FES. In the last section we itemize further research tasks
which need be accomplished to fully develop the FES as a
realizable structure. The remainder of this section is
devoted to a brief review, by chapter, of the pertinent
points presented in this thesis.

In Chapter 1, we introduced the subject of computer
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vision as the analysis of pictorial information. This
activity was divided into two distinct parts: "low~level"
analysis or preprocessing and "high-level" analysis or
interpretation. Next, we set the stage for the design of a
structure which would perform "low-level" analysis by
defining goals and objectives.

In the next two chapters we reviewed the literature
regarding associative memory and cellular logic arrays.
The use of associative memory was shown to have inherent
parallelism in processing data. Cellular logic arrays were
presented as a "natural" structure for computer vision
systems. Current implementations of both associative
processors and cellular array computers were reported.
Applications of these systems to computer vision were
highlighted.

In Chapter 4, we "married" the concepts presented in

the previous chapters by designing an associative

preprocessing structure for qualitative feature extraction.

K

Termed a FES, for Feature Extracting Structure, the desigr

M

was first presented in a general configuration. We then
designed two specific FES's for the extraction of specific
features.

FES applications was the topic for discussion in

-
r.
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5 Chapter 5. Here we applied the specific FES's as an aid to
v ) )

S focusing or rotation of images in a vision system. Based
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upon low-level simulation, we concluded that these

applications were viable. Other applicaticns were
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discussed as practical uses for the FES.

6.2 Analysis of Goals and Objectives

In this section we analyze the FES with respect to
the goals and objectives which were established in the
Introduction, Chapter 1, The three categories listed were
simplicity, parallelism and flexibility.

We consider the architecture of the FES to be simple
in the respect that it contains only a few components. The
largest and most complicated component is the asscciative
cellular array, which achieves a measure of simplicity
through reqularity of construction. The array is compcsed
of a rectangular pattern of cells, where each cell is
composed of relatively simple logic.

One of the problems discussed in Chapter 2 was the
overhead required to read or write to the associative
memory. In our design, by colocating the associative
memory elements with the cells of the array, we have
simplified this overhead. Data is written by the single
operation of latching the input data, in parallel, into the
associative memory. In operation, in the applications
covered, there is no need to read this stored data.

Feature extraction is accomplished by comparative searching
operations which highlight contextual qualities ~f the
data.

The FES structure particularly appears simpl< with
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respect to the computational work it accomplishes. 1In the
example of Section 5.2, the input to the FES is a 20 x 20
array of digital information, or 2,400 bits of information
{20 x 20 x 6 bits grey code}. Output for the focusing
example consisted of a standard deviation measure which at
its greatest value would be numerically less than 50, or 6
bits. This is a remarkable decrease in data bandwidth.
The structure uses n x n parallel operations whenever
possible. Sequential operations required in applications
may be pipelined as discussed in Chapter 4. Neighborhood
cperations are conducted in parallel witiin the cellular
logic array. Additionally, the parallel search capability
of the associative memory is utilized in each application

discussed. We will defer discussion of the speed thereby

gained due to this highly parallel structure until the next -
section. -
The flexibility of the FES structure was established ii

in Chapters 4 and 5. This structure has potential for many

:
P

and varied applications in computer vision. The structure

i is capable of performing a variety of neighborhood

E operations. As such, it is capable of performing standard iﬂ
i preprocessing such as noise removal and enhancement. These

; operations, however, are invisible at the output as the FES

is designed for feature extraction and the output is a
i coded measure cf the feature. Ancther consideration which
E was expressed in the Introduction under flexibility was

expandability. This will be discussed in the next secticn.
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6.3 FES Performance

In this section the intent is to estimate several
performance factors for the FES. The factors selected for
analysis were cost, size and speed.

The cost of a FES implementation will probably be

very expensive. As a relatively "new" architecture, the

development of detailed gate-level designs, chip layout and

- AR L
L DN

templates for production will be expensive with regard to
both money and time. However, this is to be expected in
implementing any new product for special application. 1In

Chapter > it was reported that a rectangular array of

r

L B o
el

'
e kg

cellular logic was very expensive. 1In Chapter 2 it was

7

reported that associative memory was about cne and a half

. A4. "‘.

PRI

times as expensive as comparable sized RAM. Therefore,

even if we ignore development costs we cannot avoid the N

fact that an FES implementation will be very expensive -
using current technology. Recall, however, a recurring
theme in this thesis is %hat these costs are declining.
In our FES design we selected a 22 x 22 array size
primarily because we felt such a design cculd be
implemented on a single chip. This was based upon the
successful chip implementation SCAPE, which is comparatle
in size to the FES. Recall that only the center 16 x 16
cells process picture informaticn. 1In order to expard a

system to "small scale" resolutior such as 64 x 64, 16 FES

chips would be required. It is not unreasonable to as:ume
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that 16 FES chips could be placed on a small printed

. circuit board. To approximate the resolution of a
; television screen (512 x 512), however, would require 64
such circuit boards. Undoubtedly, "large scale"
resolution, such as satellite images of 1000 x 1000, are
beyond the capability of the FES unless "windowing" or
other techniques are employed. However, consider another
trend of technology: the amount of logic possible per chip
is increasing.

Now let us consider the speed of operation obtainable
by the FES. Specifically, we will try to estimate the time
it would take for "focusing" as described in the example

application of Section 5.2. 1If we examine this particular

LR e e M

FES structure (Figure 4.6), we can realistically assume
that the most time consuming operation will occur in the
"adder" stages of the Output Logic. Let us assume a
conservative figure of 50 nanoseconds for this operation.
Using the steps listed in Section 4.3.1 as a guideline, we

can estimate the time required to analyze the pictorial

information. Assuming the pipelining discussed, a rough
calculation yields: 64 (grey levels) + 2 (latching and
output steps) + 9 (pipeline overhead) + 20 (serial input
estimate) which equals 95 periods of time. Multiplying by
50 nanoseconds yields a rough figure of 5 microseconds to
complete an analysis. Even if this calculation is off by
an order of magnitude, the analysis is completed in much

less time than required to move the lens of the visual
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system. Therefore, we conclude that the FES is capable of

real-time picture preprocessing using today's technology.
e
6.4 Further Research Tasks ‘9

To eventually develop an integrated chip for

... ‘ ,.
* ,:‘ll:"

low-level picture processing, we need to consider a number
of topics, some of which have been investigated for years
at various research institutions. The lists presented here
are by no means exhaustive. However, accomplishment of
these tasks should aid in the realization of the desired
integrated system.

We have divided this section into three lists of
further research tasks based upon their level of "future
work" activity. The first level addresses specific,
"next-step" tasks which would further develop the concepts -
presented in this thesis. These tasks could be pursued as o
MS or PhD projects. The second level addresses the same
topics, except that, these tasks require greater resources
then are normally available to the graduate student. The
third level is concerned with global research directions in -
computer vision. We realize that some tasks may overlap
these levels. However, to avoid redundancy we have listed E:

different tasks in each level,

© M
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First Level Tasks

Develop simple yet realistic models for input
pictures.

Develop efficient algorithms and programs which
simulate neighborhood operations on sequential
computers,

Investigate additional applications for the FES.
Using the modeling and simulation developed
above, develop verification procedures for

FES applications/operations.

Develop gate-level designs for FES components.

Study Controller microprogramming, control and
timing for FES operations.

Second Level Tasks

Develop multiple-feature extracting FES's to
include designs, algorithms and applications.

Develop FES Chip floorplans for implementation.
Conduct high-level simulations to verify designs.

Implement in hardware and further study cellular
logic arrays possessing associative memory.

Actually construct and test FES components.

Design and conduct experiments to measure
FES performance in real-time.

Third Level Tasks

Develop image description languages and image
manipulation languages.

Develop efficient algorithms for pattern
recognition and classification using these
languages.

Develop standard "sets" of features which
when extracted during preprocessing provide
sufficient input for the algorithms developed
above.

Research more efficient methods for performing
neighborhood operations, histogramming and the
addition of large numbers of l-bit values.
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APPENDIX

The experimental data for the focus application
(Section 5.2.2) is contained in this appendix. A PASCAL
program which reads an input picture, defocuses this input,
computes histograms, and calculates standard deviation is
displayed first. This is followed, in succession, by the
data generated from this program for the eight example
pictures listed in Table 5.2. The data shown consists of
each focused picture follcwed by a series of twelve
defocused images of the same picture; The histograms and
standard deviation results immediately follow each set of

pictures.
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PRCGRAM DEFOCUS (PICTIN,QUTPUT,INPUT):

it"ttt""'i.'t.t.'t't.t'..."ttttt.t.tt'ii."'..".t"tt.ttt'.t.t"')

{(* THIS PRCGRAM READS AND DEFOCUSES AN INPUT PICTURE. HISTOGRAMS AND *;
i ASSOCIATED STANDARD DEVIATIONS ARE CCMPUTED AND PRINTED. *)
[l MICHAEL BIBBY MAY 1986 *)

‘\'.'.'t"."'t"..'i.'l""""...".".-.tt."."“'ttt'.'tiﬁ"ﬁ'iit"t')

CONST NUM=22: NUMB=16;

TYPEZ MATX=ARRAY![.1..NUM,...NCM] OF INTEGER;
MATY=ARRAY[...NUMB,...NUMB| OF INTEGER;
HISTO=ARRAY[0..63,0..12] OF INTEGER;

VAR XMAT:MATX;
YMAT:MATY;
HIST:HISTC;
FULFAC:INTEGER:
OCNE,INIT:3C0OLEAN;
DATAQUT,2ATAIN,PICTIN:TEXT;
AREA,AA,3B,CC,0D,EE,FF,GG, HH: REAL;

PRCCEDURE HGRAM(YMAT:MATY;VAR FUZFAC:INTEGER; VAR HIST:HISTO; VAR INIT:
BOOLEAN; VAR DONE:BCOLEAN) ;

* THIS SUBROUTINE CCMPUTES THE HISTCGRAM FCR AN IMAGE *)

AR RCW,(OL,ZIFF:INTEGER:

3EZGIN
IF'NCT DCNE!
THEN BEGIN
IF(NCT IN
THEN N
ROW:=0 TO 63 DO
FOR COL:=0 TO 12 DO
HIST[ROW,COL]:=0;
INIT:=TRUE;
END;
FCR ROW:=. TC 16 20
FCR CCL:=. TO 16 DO
HIST[YMAT[ROW,COL|,FUZFAC]:=HIST{YMATI[ROW,COL],FUZFAC ]+,
END;
END;

PRCCECURE PRHIST'HIST:HISZTO);

* THIS SUBRCUTINE PRINTS THE HISTCGRAMS *)

VAR PAP,START,RCW,COL:INTEGER;
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WRITELN( 'PROCEED?');
READLN(START) ;
ITELN(DATAQOUT);
WRITELN(DATAQUT) ;
WRITELN(DATAQUT) ;
WRITELN(DATAQUT) ;
WRITELN{DATAOQUT) ;
WRITELN(DATAOUT,' INTENSITY HISTOGRAMS FOR EXAMPLE')};
WRITE(DATAQUT,' = ===se=coccec—=-oo- ‘)
WRITELN(DATAQUT, ' =-=-me—meeesccccccreercmcccccceao— o= ');
WRITELN/!DATAQUT) ;
WRITELN(DATAQUT, ' FU2Z FACTOR');
WRITE(DATAOQUT,' I /')
FCR RCW:=0 TO 12 DO
WRITE(DATAOUT,ROW:3,' ');
WRITELN(DATAQUT) ;
WRITE(DATAQUT,' = =scceecccccccmeeecmmacecocceec——ccene ')
WRITELN(DATAQUT, '——==m——mcmmeemeemae )
FCR ROW:=0 TO 63
DC BEGIN
IF ROW=45
THEN 3EGIN
WRITELN( 'INSERT PAPER');
READLN(PAP) ;
WRITELN(DATACUT);
WRITELN(DATAOUT);
WRITELN{DATAOUT);
WRITELN(DATAOUT) ;
WRITELN(DATAQUT) ;
WRITE(DATAQUT," v
WRITELN{DATAOQUT, 'INTENSITY HISTOGRAMS (CONTINUED)');
WRITE(DATAQUT," = wcmccmm s meccmceceo—an ¥
WRITELN(DATAQUT, '==——=== o~ cmmm e mmmmmcmemce oo ")
WRITELN{DATAQUT);
END;
WRITE(DATAOUT, ' 'LROW:3,' /');
FOR COL:=0 TO 12 DO
WRITE(DATAOUT,HIST{ROW,COL}:3,"' ');
WRITELN(DATAQUT) ;
END;
END;

PRCCZDURE PRFCC (HIST:HISTO);

(* THIS SUBRCUTINE CALCULATES AND PRINTS HISTOGRAM STATISTICS *)

TYPE FOCUS=ARRAY[0..l12] OF REAL;

VAR MN,STD:FCCUS;
ROW,COL:INTEGER:
SQRCOT, PSUM, SUM:REAL;

BEGIN
FOR CCL:=0 TO 12
20 BEGIN
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SUM:=0;
FOR ROW:=0 TO 63
DO BEGIN
PSUM:=ROW*HIST[ROW,COL]:
SUM:=SUM+PSUM;
END;
MN(COL]:=SUM/256;
SUM:=0;
FOR ROW:=0 TO 63
DO BEGIN
PSUM:=SQR(ROW-MN[COL] ) *HIST{ROW,COL];
SUM:=SUM+PSUM;
END;
WNRITELN{(SUM:12:3);
READLN(SQROQOT) ;
STD{COL]:=0.0625*SQRCOT;
END;
WRITELN{DATAOUT) ;
WRITELN(DATAQUT) ;
WRITELN(DATACUT, ' HISTOGRAM ANALYSIS'):
WRITE(DATAOUT, ' S~ meesccseccccaccce- ‘)
WRITELN(DATAQUT, '~===m-ecemrcmmcc e ccc e ccccm s mc e n = ‘s
WRITELN(DATAQUT) ;
WRITE(DATAOUT, ' ')
WRITELN(DATAOUT, ' FUZZ FACTOR MEAN STANDARD DEVIATION'):
WRITE(DATAQUT, ' =——='};
WRITELN(DATAOUT, '==~==emecew=" R i ek  taiete bt Db b b D E bt ')
FOR COL:=0 TO 12
DC WRITELN(DATAOQUT,' '‘,coL:2,"' ', MN[COL]:7:2,
! ',STD[COL}:7:2};
END:
PRCCEZCURE LOADMAT (VAR XMAT:MATX; VAR DATAIN,DATAQUT:TEXT; VAR YMAT:MATY;
VAR FUZFAC:INTEGER; VAR HIST:HISTO;VAR INIT,DCNE:300LEAN);
(* THIS SUBROUTINE REALCS THE INPUT PICTURE *)
VAR COL, RCW:INTEGER;
BEGIN
FOR RCW:=L TO NUM
DO BEGIN
FOR COL:=1 TO NUM
DO BEGIN
READ (DATAIN, XMAT(ROW,COL]);
IF{/ROW>3, AND (RCW<20) AND (COL>3) AND (COL<20))
THEN BEGIN
YMAT{RCW=-3,COL=-3]:=XMAT[ROW,COL];
END;
END;
READLN(DATAIN):
END;
PUZFAC:=0;
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HGRAM( YMAT,FUZFAC,HIST,INIT,DONE);
END:

PRCCEDURE CALCA (XMAT:MATX;ROW,COL:INTEGER;AA,BB,CC,DD, "E:REAL;
VAR S1,S2,S83,54,S5:REAL);

(* THIS SUBROUTINE PERFORMS BLURRING COMPUTATICONS *)

BEGIN
S1:=AA*(XMAT|[ROW,COL+1 ] +XMAT[ROW,COL-1]+XMAT[RCW-1,COL;+~
XMAT[RCW+1,COL]));
S2:=BB*(XMAT(ROW-~1,COL-1]+XMAT[ROW-1,COL+1]+
XMAT[ROW+1,COL~1]+XMAT{ROW+1,C0L+1]);
S$3:=CC*(XMAT[ROW,COL+2 ] +XMAT{ROW,COL-2]+XMAT[RCW=-2,COL |+
XMAT{ROW+2,COL]);
S4:=DD*(XMAT[RCWN-2,COL-1)+XMAT[ROW-2,COL+1]+
XMAT [ RCW-1,COL-2]+«XMAT[ROW-1,COL+2]+XMAT[ROW+1,COL-2]+
XMAT[RCW+1,COL+2 ] +XMAT[ROW+2,COL-1]+XMAT[ROW+2,COL+1]);
S5:=EE*{ XMAT[ROW=-2,COL-2]+XMAT[RCW-2,COL+2]+
XMAT [ ROW+2,COL=2 ] +XMAT[ROW+2,COL+2]);
END;

PRCCZDURE CALCB(XMAT:MATX;ROW,COL:INTEGER;FF,GG,HH:REAL;
VAR 56,S7,S8:REAL);

(* THIS SUBROUTINE PERFCRMS BLURRING COMPUTATIONS. *)

BEGIN

S6:=FF*(XMAT[ROW,COL+3]+XMAT{ROW,COL-3]+XMAT|[ROW=-3,COL ]+
XMAT[RCW+3,COL] ) ;

S7:=GG*(XMAT[ROW-3,COL~-1]+XMAT{ROW-3,COL+1]+
XMAT[RCW-1,COL~3]+XMAT{ROW-1,COL+3 | +XMAT[RCOW+1,COL-3 ]+
XMAT[ROW+1,COL+3]+XMAT[ROW+3,COL-1]+XMAT[ROW+3,COL~+1]);
S8:=HH*( XMAT[ROW-3,COL-2 ] +XMAT{ROW=3,COL+2]+
XMAT [ROW=-2,COL~3 ] +XMAT{ROW=-2,COL+3 J+XMAT{RCW+2,COL~-3 ]+
XMAT[ROW+2,COL+3 ] +XMAT{RCW+3,COL=-2 ]+XMAT{RCW+3,COL+2}}

:

PRCCEZDURE “ALC(XMAT:MATX;VAR YMAT:MATY;VAR DATAQUT:TEXT;AREA,AA,2B,CC,
DD,Z2E,FF, GG, HH:REAL; DONE: BOOLEAN) ;

(* THIS SUBROUTINE PERFCRMS BLURRING COMPUTATIONS. *)

VAR ROW,CCL:INTEGER;
$1,82,83,54,585,56,57,5S8:REAL;

BEGIN
IF({NOT DONE)
THEN BEGIN
FCOR RCW:=4 TC .9
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DO BEGIN
FOR COL:=4 TO 19
DO BEGIN
CALCA ( XMAT, ROW,COL,AA,BB,CC,DD,EE,S1,52,53,84,85);
CALCB(XMAT,ROW,COL,FF,GG,HH,S6,S7,S88) ;
YMAT[ROW-3,COL=-3] :=ROUND( (XMAT[ROW,COL}+S1+52+53+54+S5+
S6+S7+S8)/AREA);
END;
END;
END:
END;

PROCEDURE FUZ2 (XMAT:MATX;VAR YMAT:MATY;VAR DATAQUT:TEXT;VAR DONE:BOOLEAN;
VAR AREA,AA,BB,CC,DD,EE,FF,GG,HH:REAL; VAR FUZFAC:INTEGER);

(* THIS SUBROUTINE INITIALIZES VARIABLES FOR DEFOCUSING COMPUTATIONS. *)

BEGIN
WRITELN(FUZFAC:2);
IF((PUZFACK]l) OR (FUZFAC>12))
THEN BEGIN
DONE:=TRUE
END
ELSE BEGIN
BB:=0;CC:=0;DD:=Q;EE:=0;FF:=0:GG:=0;HH:=0;
CASE FUZFAC OF
l: BEGIN
AREA:=],78;AA:=0,195;
END;
2: BEGIN
AREA:=3,14;AA:=0,.455:8BB:=0,08;
END:;
3: BEGIN
AREA:=4,92;AA:=0.73;BB:=0,25;
END;
4: BEGIN
AREA:=7,08;AA:=0.97;BB:=0.55;
END;
5: BEGIN
AREA:=9 6;AA:=1;BB:=0.86;CC:=0.23;DD:=0.03;
END;
6: BEGIN
AREA:=12,56;AA:=1;BB:=0.98;CC:=0,47;DD:=0,22;
END;
7: BEGIN
AREA:=15,88;AA:=1;BB:=1;CC:=0,73;DD:=0,48;
EE:=0.03;
END;
8: BEGIN
AREA:=19,6;AA:=1;BB:=1;CC:=0,99;:DD:=0.77;
EE:=0.12;
END:
9: BEGIN
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AREA:=23,.68;AA:=1;BB:=1;CC:=]1;DD:=0,96

EE:=0.35;FF:=0.24;GG:=0.08; -
END; <
P 10: BEGIN -

AREA:=28.24;AA:=];BB:=]1;CC:=]1;DD:=];
EE:=0,65;FF:=0.48;GG:=0.32;HH:=0.02;
END;
11: BEGIN
AREA:=33,16;AA:=1;BB:=]1;CC:=];DD:=1;
EE:=0,.89;PF:=0,77;GG:=0.58;HH:=0.11;

3 END;
; 12: BEGIN
; AREA:=38.48;AA:=];BB:=];CC:=1,DD:=];
7 BE:=]1;FF:=0.99;:;GG:=0.85;HH:=0,34;
END;
END;
END:

. END;
: ('tit'.""'..ti'..'..Q'ti'"'.'.ﬁ"."'i"'.."."'itﬁ.'i'.."'t".'.)

(""'""".".""."i".........ﬁ*.'.""i"......t"..t.."'.""lJ

('i".'.t’if.."' MAIN pRoGRAM (2222222222 ZRRERXERR2 SRR X2 RUE N I

I
(.'.'...'t".".t"tt".'"'!'..t.'..".'."'..'*'.'.t'!"...".'.t..')

('i'tt"t"'.."t't..'.it."".t"'i'.!"ﬁi"""."'t."t.tt".t'tt..;

BEGIN
RESET(DATAIN, 'PICTIN.TEXT')
REWRITE(DATAQUT, 'PRINTER: ')

.
;
i

DONE:=FALSE;
INIT:=FALSE;
. LOACMAT (XMAT, DATAIN,DATAGCUT, YMAT, FUZFAC,BIST, INIT, DONE) ;
. WHILE NOT DONE
- DO BEGIN .
. FCR PUZFAC:=1 TO 13 )
. DO BEGIN e
: FUZZ ( XMAT, YMAT, DATAOUT, DONE, AREA, AA, BB, CC, DD, EE, FF, GG, HH, FUZPAC) ; -
CALC(XMAT, YMAT, DATAOUT, AREA, AA, BB, CC, DD, EE, FF, GG, HH, DCNE ) ; -~
HGRAM(YMAT, FUZFAC, HIST, INIT, DONE) ;
END;
END; o
PRHIST'HIST!; .
- PRFCC/HIST);
LOSE{ DATACUT, CRUNCH ;

m

ND.
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EXAMPLE 2 "SMALL BLOCK B"

THE FOCUSED PICTURE
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INTENSITY HISTOGRAMS FOR EXAMPLE 2
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INTENSITY HISTOGRAMS (CONTINUED)
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EXAMPLE 3 "LARGE BLOCK"

THE FOCUSED PICTURE
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